Search results
1 – 1 of 1Lochan Singh and Vijay Singh Sharanagat
Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…
Abstract
Purpose
Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.
Design/methodology/approach
The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.
Findings
The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.
Research limitations/implications
Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.
Originality/value
The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.
Graphical abstract
Details