Search results
1 – 7 of 7T. Raghuraman, AR. Veerappan and R. Silambarasan
This paper presents the approximate limit pressure solution for shape-imperfect and through-wall circumferential cracked (TWCC) 90° pipe bends at the intrados region. Finite…
Abstract
Purpose
This paper presents the approximate limit pressure solution for shape-imperfect and through-wall circumferential cracked (TWCC) 90° pipe bends at the intrados region. Finite element (FE) limit analysis was used to estimate the limit pressure by considering the small geometrical change effects.
Design/methodology/approach
Three-dimensional (3D) geometric linear FE methodology was implemented to investigate the limit pressure of structurally deformed TWCC 90° pipe bends. The material considered in the analysis is elastic perfectly plastic (EPP). The limit pressure of TWCC shape-distorted pipe bends was predicted from the corresponding internal pressure when von-Mises stress was equal to or just exceeded the material’s yield strength for all the models. The theoretical solution which was published in the literature was used to evaluate the current FE approach.
Findings
Ovality Co and TWCC at the intrados region caused a considerable impact on pipe bends, while the thinning? Ct produced a negligible effect and hence was not included in the analysis. With the combined effect, the bend portion of pipe bend experiences substantial influence, and the TWCC effect consequently increases with 45o, 60o and 90o crack angles and decreases the limit pressure of pipe bends. An improved closed-form empirical limit pressure solution was proposed for TWCC shape-distorted pipe bends at the intrados region.
Originality/value
In the limit pressure analysis of 90° pipe bends, the implications of structural irregularities (ovality and thinning) and TWCC have not been examined and reported.
Details
Keywords
Raghuraman T., Veerappan AR. and Shanmugam S.
This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit…
Abstract
Purpose
This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit analysis with the consideration of small geometry change effects.
Design/methodology/approach
The limit pressure of 90° pipe bends with ovality and thinning has been evaluated by geometric linear FE approach. Internal pressure was applied to the inner surface of the FE pipe bend models. When von-Mises stress equals or just exceeds the yield strength of the material, the corresponding pressure was considered as the limit pressure for all models. The current FE methodology was evaluated by the theoretical solution which has been published in the literature.
Findings
Ovality and thinning produced a significant effect on thin-walled pipe bends. The ovality weakened pipe bend performance at any constant thinning, while thinning improved the performance of the bend portion at any constant ovality. The limit pressure of pipe bends under internal pressure increased with an increase in the bend ratio and decreased with an increase in the pipe ratio. With a simultaneous increment in bend radius and reduction in wall thickness, there was a reduction in limit pressure. A new closed-form empirical solution was proposed to evaluate limit pressure, which was validated with published experimental data.
Originality/value
The influences of structural deformation (ovality and thinning) in the limit pressure analysis of 90° pipe bends have not been investigated and reported.
Details
Keywords
Krishna LA, Veerappan AR and Shanmugam S
Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the…
Abstract
Purpose
Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the influence of the manufacturing process induced, inevitable cross sectional deviations called ovality and thinning. The influence of ovality on plastic limit and collapse loads are reported in literature. Hence, it is important to study the combined effect of ovality and thinning on elastic stresses of bends.
Design/methodology/approach
This paper relies on elastic finite element evolutions of stress components– longitudinal membrane stress, longitudinal bending stress, circumferential membrane stress and circumferential bending stresses. Based on the results, the coefficients for the equations are also obtained through the regression analysis.
Findings
New analytical solutions are prescribed to estimate the elastic stresses at the mid-section of the 90° very thin-walled bend with ovality and thinning, when subjected to in-plane bending moment. The ovality has significant influence on elastic stress whereas the thinning is not so. The proposed equations give an accurate estimation of elastic stresses at the mid-section of the bend with the incorporation of the parameters, namely R/rm, rm/t and ovality.
Research limitations/implications
The influence of shape imperfections, namely ovality and thinning on elastic stress of 90° very thin-walled bends having rm/t > 20, subject to in-plane bending moment is proposed.
Originality/value
The influence of shape imperfections, namely ovality and thinning, on elastic stress of 90° very thin-walled bends with rm/t > 20, subject to in-plane bending moment is proposed.
Details
Keywords
A. Vinothkumar, AR. Veerappan and S. Shanmugam
The aim of this study is to ensure the structural integrity of 90° back-to-back (B2B) pipe bends by developing a closed-form numerical solution for estimating the collapse load of…
Abstract
Purpose
The aim of this study is to ensure the structural integrity of 90° back-to-back (B2B) pipe bends by developing a closed-form numerical solution for estimating the collapse load of shape distorted 90° B2B pipe bends using non-linear finite element (FE) analysis.
Design/methodology/approach
The collapse behaviour of 90° B2B pipe bends with ovality (Co) and thinning (Ct) has been evaluated by non-linear FE approach. Moment load is applied in the form of in-plane closing moment (IPCM). The current FE approach was evaluated by the numerical solution for the plastic collapse moment of pipe bends, which has been published in the literature. The collapse moments were obtained from the twice elastic slope (TES) method using the moment-rotation curve of every individual model.
Findings
The implication of Ct/Cth on collapse load is found to be highly insignificant in terms of increasing bend radius and Co. Co weakens the geometry, and its effect on the collapse load is substantial. A closed-form numerical solution has been proposed to calculate the collapse load of 90° B2B pipe bend with shape imperfections.
Originality/value
The implications of shape distortion (Co and Ct) in the failure analysis (collapse load) of 90° B2B pipe bends has not been investigated and reported.
Details
Keywords
Naveenkumar R., Shanmugam S. and Veerappan AR
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…
Abstract
Purpose
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).
Design/methodology/approach
Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.
Findings
Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.
Originality/value
Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.
Details
Keywords
L.A. Krishna, A.R. Veerappan and S. Shanmugam
Precise assessment of elastic stress is required in the field of fracture mechanics. While bending a straight pipe, the deformation of the circular cross section out of roundness…
Abstract
Purpose
Precise assessment of elastic stress is required in the field of fracture mechanics. While bending a straight pipe, the deformation of the circular cross section out of roundness called ovality and thinning are foreseeable. The ovality has a significant effect on the structural integrity of the pipe. The sole objective of this paper is to provide new analytical solutions to predict accurate elastic stress distribution at the median section of the U-bend, with deformities such as ovality and thinning when subjected to in-plane closing moment by using elastic finite element analysis.
Design/methodology/approach
The quarter model of the U bend has been analysed by using ABAQUS. The elastic stress components included in this analysis are longitudinal bending stress, longitudinal membrane stress, circumferential bending stress and circumferential membrane stress. Based on finite element results, analytical elastic stress solutions are also provided for both longitudinal and circumferential stresses by using these stress components.
Findings
As the ovality has a significant effect, it is further included in the analytical solution. The thinning is not included since it has very little effect. Analytical stress solutions are provided for a wide range of bend characteristics to include ovality, mean radius and thickness.
Originality/value
Significance of ovality and thinning on elastic stress of U-bend has not been reported in the existing literature.
Details
Keywords
Chiara Petria D’souza and Poornima Tapas
This paper outlines the diversity and inclusion framework for Industry 5.0, which has human-centricity, sustainability and resilience as its main characteristics. This is…
Abstract
Purpose
This paper outlines the diversity and inclusion framework for Industry 5.0, which has human-centricity, sustainability and resilience as its main characteristics. This is concerning the disruption technology has caused.
Design/methodology/approach
A rapid scoping review was carried out, which collates recent scholarly outputs. It is based on a sample of 92 high-quality documents from two databases focusing on diversity and inclusion in Industry 5.0. Further, the authors have analyzed the literature based on the McKinsey 7S model and formed a diversity framework for Industry 5.0 to promote innovation.
Findings
These findings can support Diversity 5.0 applications with human–robot collaboration and a human-centric approach in Industry 5.0. The article provides key insights on cross-cutting themes like upskilling given digitization, innovation and other HR trends in the industry.
Practical implications
The study suggests that HR professionals, governments and policymakers can use the recommendations to broaden their perspectives and develop policies, interventions, laws and practices that will impact the future workforce and boost innovation.
Social implications
This will help organizations in Industry 5.0 to be competitive and build on their talent management strategies to fulfill their diversity goals as well as support sustainable development goals.
Originality/value
We give critical views on the aspects that will define the future of work in terms of skills, innovation and safety for employees, drawing on results from a wide range of theoretical and analytical viewpoints.
Details