Search results
1 – 10 of 19Naveenkumar R., Shanmugam S. and Veerappan AR
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…
Abstract
Purpose
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).
Design/methodology/approach
Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.
Findings
Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.
Originality/value
Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.
Details
Keywords
Sudershan Rao Vemula, R. Naveen Kumar and Kalpagam Polasa
The purpose of this paper is to review the nature and extent of foodborne diseases in India due to chemical and microbial agents.
Abstract
Purpose
The purpose of this paper is to review the nature and extent of foodborne diseases in India due to chemical and microbial agents.
Design/methodology/approach
The scientific investigations/reports on outbreak of foodborne diseases in India for the past 29 (1980‐2009) years due to adulteration, chemical, and microbiological contamination have been reviewed. Reported scientific information on foodborne pathogens detected and quantified in Indian foods has also been reviewed.
Findings
A total of 37 outbreaks involving 3,485 persons who have been affected due to food poisoning have been reported in India. Although the common forms of foodborne diseases are those due to bacterial contamination of foods, however, higher numbers of deaths have been observed due to chemical contaminants in foods.
Originality/value
A national foodborne disease surveillance system needs to be developed in India in order to enable effective detection, control and prevention of foodborne disease outbreaks.
Details
Keywords
Mohammad M. Rahman, Ziad Saghir and Ioan Pop
This paper aims to investigate numerically the free convective heat transfer efficiency inside a rectotrapezoidal enclosure filled with Al2O3–Cu/water hybrid fluid. The bottom…
Abstract
Purpose
This paper aims to investigate numerically the free convective heat transfer efficiency inside a rectotrapezoidal enclosure filled with Al2O3–Cu/water hybrid fluid. The bottom wall of the cavity is uniformly heated, the upper horizontal wall is insulated, and the remaining walls are considered cold. A new thermophysical relation determining the thermal conductivity of the hybrid nanofluid has been established, which produced results those match with experimental ones.
Design/methodology/approach
The governing partial differential equations are solved using the finite element method of Galerkin type. The simulated results in terms of streamlines, heat lines and isotherms are displayed for various values of the model parameters, which govern the flow.
Findings
The Nusselt number, friction factor and the thermal efficiency index are also determined for the pertinent parameters varying different ratios of the hybrid nanoparticles. The simulated results showed that thermal buoyancy significantly controls the heat transfer, friction factor and thermal efficiency index. The highest thermal efficiency is obtained for the lowest Rayleigh number.
Practical implications
This theoretical study is significantly relevant to the applications of the hybrid nanofluids electronic devices cooled by fans, manufacturing process, renewable energies, nuclear reactors, electronic cooling, lubrication, refrigeration, combustion, medicine, thermal storage, etc.
Originality/value
The results showed that nanoparticle loading intensified the rate of heat transfer and thermal efficiency index at the expense of the higher friction factor or higher pumping power. The results further show that the heat transmission in Al2O3–Cu/water hybrid nanofluid at a fixed value of intensified $\phi_{hnf}$ compared to the Al2O3/water nanofluid when an amount of higher conductivity nanoparticles (Cu) added to it. Besides, the rate of heat transfer in Cu/water nanofluid declines when the lower thermal conductivity Al2O3 nanoparticles are added to the mixture.
Details
Keywords
Feda Abdalla Zahor, Reema Jain, Ahmada Omar Ali and Verdiana Grace Masanja
The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition…
Abstract
Purpose
The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition, the influence of various parameters on the velocity profiles, temperature profiles and entropy generation was studied. Furthermore, the numerical methods used to solve the model equations were summarized. The underlying purpose was to understand the research gap and develop a research agenda.
Design/methodology/approach
This paper reviews 141 journal articles published between 2010 and 2022 on topics related to mathematical models used to assess the impacts of various parameters on the entropy generation, heat transfer and velocity of the MHD flow of nanofluids.
Findings
This review clarifies the application of entropy generation mathematical models, identifies areas for future research and provides necessary information for future research in the development of efficient thermodynamic systems. It is hoped that this review paper can provide a basis for further research on the irreversibility of nanofluids flowing through different channels in the development of efficient thermodynamic systems.
Originality/value
Entropy generation analysis and minimization constitute effective approaches for improving the performance of thermodynamic systems. A comprehensive review of the effects of various parameters on entropy generation was performed in this study.
Details
Keywords
Iskandar Waini, Anuar Ishak, Ioan Pop and Roslinda Nazar
This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.
Abstract
Purpose
This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.
Design/methodology/approach
The governing partial differential equations for the two-phase flow of the hybrid nanofluid and the dust particles are reduced to ordinary differential equations using a similarity transformation. Then, these equations are solved using bvp4c in MATLAB software. The bvp4c solver is a finite-difference code that implements the three-stage Lobatto IIIa formula. The numerical results are gained for several values of the physical parameters. The effects of these parameters on the flow and the thermal characteristics of the hybrid nanofluid and the dust particles are analyzed and discussed. Later, the temporal stability analysis is used to determine the stability of the dual solutions obtained as time evolves.
Findings
The outcome shows that the flow is unlikely to exist unless satisfactory suction strength is imposed on the shrinking sheet. Besides, the heat transfer rate on the shrinking sheet decreases with the increase of . However, the increase in and lead to enhance the heat transfer rate. Two solutions are found, where the domain of the solutions is expanded with the rising of, and. Consequently, the boundary layer separation on the surface is delayed in the presence of these parameters. Implementing the temporal stability analysis, it is found that only one of the solutions is stable as time evolves.
Originality/value
The dusty fluid problem has been widely studied for the flow over a stretching sheet, but only limited findings can be found for the shrinking counterpart. Therefore, this study considers the problem of the dusty fluid flow over a shrinking sheet containing Cu-Al2O3/water hybrid nanofluid with the effect of the magnetic field. In fact, this is the first study to discover the dual solutions of the dusty hybrid nanofluid flow over a shrinking sheet. Also, further analysis shows that only one of the solutions is stable as time evolves.
Details
Keywords
Shimpy Shimpy, Mahesh Kumar and Anil Kumar
Food loss and wastage is an issue of global concern and the household sector is one of the biggest contributors to this. Solar drying has been explored by many eminent researchers…
Abstract
Purpose
Food loss and wastage is an issue of global concern and the household sector is one of the biggest contributors to this. Solar drying has been explored by many eminent researchers as a solution to this problem but there have been concerns about the lack in designs, higher cost, lower performance, and consumer acceptability. The present research aims to design a small-scale domestic solar dryer by using computer software.
Design/methodology/approach
Response surface methodology (RSM) and computational fluid dynamics (CFD) are used to design the domestic solar dryer. Initially, design variables (inlet and outlet vent height) are identified and a design of experiments has been created using RSM for set of experimental runs. The experimental runs suggested by RSM were carried out using CFD simulation in COMSOL Multiphysics software and the results were used for optimization of response variables (outlet velocity and drying chamber temperature) in RSM.
Findings
Outlet vent height was found to be most significantly affecting parameter to both the responses. The optimum values of inlet and outlet vent heights were 0.5 and 2.5 cm, respectively with the overall desirability of 0.728. The model accuracy was tested by conducting a confirmation test as post processing in design expert software.
Originality/value
Designing a solar dryer is a complex, costly and time consuming process, this study presents an easy, economic and fast method to design a new solar dryer. It would help researchers to design and develop new domestic as well as large size industrial solar dryer.
Details
Keywords
Subhamita Chakraborty, Prasun Das, Naveen Kumar Kaveti, Partha Protim Chattopadhyay and Shubhabrata Datta
The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of…
Abstract
Purpose
The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of steel, so that the model predictions become valid from materials engineering point of view.
Design/methodology/approach
Genetic algorithm (GA) is used in different ways for incorporating system knowledge during training the ANN. In case of training, the ANN in multi-objective optimization mode, with prediction error minimization as one objective and the system knowledge incorporation as the other, the generated Pareto solutions are different ANN models with better performance in at least one objective. To choose a single model for the prediction of steel transformation, different multi-criteria decision-making (MCDM) concepts are employed. To avoid the problem of choosing a single model from the non-dominated Pareto solutions, the training scheme also converted into a single objective optimization problem.
Findings
The prediction results of the models trained in multi and single objective optimization schemes are compared. It is seen that though conversion of the problem to a single objective optimization problem reduces the complexity, the models trained using multi-objective optimization are found to be better for predicting metallurgically justifiable result.
Originality/value
ANN is being used extensively in the complex materials systems like steel. Several works have been done to develop ANN models for the prediction of CCT diagram. But the present work proposes some methods to overcome the inherent problem of data-driven model, and make the prediction viable from the system knowledge.
Details
Keywords
The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with…
Abstract
Purpose
The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.
Design/methodology/approach
A numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.
Findings
The results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.
Originality/value
Although there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.
Details
Keywords
Shima Amini, Alireza Rezvani, Mohsen Tabassi and Seyed Saeed Malek Sadati
Cost overruns have been identified as the most significant challenge for construction sector stakeholders. Like many developing countries, the Iranian construction industry…
Abstract
Purpose
Cost overruns have been identified as the most significant challenge for construction sector stakeholders. Like many developing countries, the Iranian construction industry suffers from poor cost performance. So, the current research aims to investigate the causes of cost overrun in Iranian construction projects. This paper also reviews the findings of similar studies conducted in several Asian countries.
Design/methodology/approach
This paper includes a literature review and a quantitative method with a questionnaire survey. The review is limited to the studies investigating the causes of cost overrun in an Asian country in the last decade. Moreover, the current research was conducted through a questionnaire prepared based on 43 common factors identified through the literature review. The required data were gathered from the representatives involved in handling construction activities in Iran. The collected data were analyzed based on relative importance index (RII), using the SPSS software package.
Findings
The results showed that poor site management, improper planning, fluctuation of prices of materials, lack of experience, and poor economic condition are the critical reasons for cost overrun in Iranian construction projects. The findings also indicated that among the studies conducted in Asian countries, the first three factors have the highest frequency.
Originality/value
This paper highlighted most studies concerning the cost overrun factors in construction projects in different Asian countries in recent years. Up-to-date knowledge helps to understand the complexity of this field in various periods and therefore minimizes the risk of cost overrun. This research can also be used as a benchmark for further studies to clarify similar issues in other developing countries.
Details
Keywords
An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…
Abstract
Purpose
An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.
Design/methodology/approach
A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.
Findings
Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.
Originality/value
The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.
Details