Search results
1 – 10 of 10Álvaro Rodríguez-Sanz, Javier Cano and Beatriz Rubio Fernández
Weather events have a significant impact on airport arrival performance and may cause delays in operations and/or constraints in airport capacity. In Europe, almost half of all…
Abstract
Purpose
Weather events have a significant impact on airport arrival performance and may cause delays in operations and/or constraints in airport capacity. In Europe, almost half of all regulated airport traffic delay is due to adverse weather conditions. Moreover, the closer airports operate to their maximum capacity, the more severe is the impact of a capacity loss due to external events such as weather. Various weather uncertainties occurring during airport operations can significantly delay some arrival processes and cause network-wide effects on the overall air traffic management (ATM) system. Quantifying the impact of weather is, therefore, a key feature to improve the decision-making process that enhances airport performance. It would allow airport operators to identify the relevant weather information needed, and help them decide on the appropriate actions to mitigate the consequences of adverse weather events. Therefore, this research aims to understand and quantify the impact of weather conditions on airport arrival processes, so it can be properly predicted and managed.
Design/methodology/approach
This study presents a methodology to evaluate the impact of adverse weather events on airport arrival performance (delay and throughput) and to define operational thresholds for significant weather conditions. This study uses a Bayesian Network approach to relate weather data from meteorological reports and airport arrival performance data with scheduled and actual movements, as well as arrival delays. This allows us to understand the relationships between weather phenomena and their impacts on arrival delay and throughput. The proposed model also provides us with the values of the explanatory variables (weather events) that lead to certain operational thresholds in the target variables (arrival delay and throughput). This study then presents a quantification of the airport performance with regard to an aggregated weather-performance metric. Specific weather phenomena are categorized through a synthetic index, which aims to quantify weather conditions at a given airport, based on aviation routine meteorological reports. This helps us to manage uncertainty at airport arrival operations by relating index levels with airport performance results.
Findings
The results are computed from a data set of over 750,000 flights on a major European hub and from local weather data during the period 2015–2018. This study combines delay and capacity metrics at different airport operational stages for the arrival process (final approach, taxi-in and in-block). Therefore, the spatial boundary of this study is not only the airport but also its surrounding airspace, to take both the arrival sequencing and metering area and potential holding patterns into consideration.
Originality/value
This study introduces a new approach for modeling causal relationships between airport arrival performance indicators and meteorological events, which can be used to quantify the impact of weather in airport arrival conditions, predict the evolution of airport operational scenarios and support airport decision-making processes.
Details
Keywords
Álvaro Rodríguez-Sanz and Luis Rubio-Andrada
An important and challenging question for air transportation regulators and airport operators is the definition and specification of airport capacity. Annual capacity is used for…
Abstract
Purpose
An important and challenging question for air transportation regulators and airport operators is the definition and specification of airport capacity. Annual capacity is used for long-term planning purposes as a degree of available service volume, but it poses several inefficiencies when measuring the true throughput of the system because of seasonal and daily variations of traffic. Instead, airport throughput is calculated or estimated for a short period of time, usually one hour. This brings about a mismatch: air traffic forecasts typically yield annual volumes, whereas capacity is measured on hourly figures. To manage the right balance between airport capacity and demand, annual traffic volumes must be converted into design hour volumes, so that they can be compared with the true throughput of the system. This comparison is a cornerstone in planning new airport infrastructures, as design-period parameters are important for airport planners in anticipating where and when congestion occurs. Although the design hour for airport traffic has historically had a number of definitions, it is necessary to improve the way air traffic design hours are selected. This study aims to provide an empirical analysis of airport capacity and demand, specifically focusing on insights related to air traffic design hours and the relationship between capacity and delay.
Design/methodology/approach
By reviewing the empirical relationships between hourly and annual air traffic volumes and between practical capacity and delay at 50 European airports during the period 2004–2021, this paper discusses the problem of defining a suitable peak hour for capacity evaluation purposes. The authors use information from several data sources, including EUROCONTROL, ACI and OAG. This study provides functional links between design hours and annual volumes for different airport clusters. Additionally, the authors appraise different daily traffic distribution patterns and their variation by hour of the day.
Findings
The clustering of airports with respect to their capacity, operational and traffic characteristics allows us to discover functional relationships between annual traffic and the percentage of traffic in the design hour. These relationships help the authors to propose empirical methods to derive expected traffic in design hours from annual volumes. The main conclusion is that the percentage of total annual traffic that is concentrated at the design hour maintains a predictable behavior through a “potential” adjustment with respect to the volume of annual traffic. Moreover, the authors provide an experimental link between capacity and delay so that peak hour figures can be related to factors that describe the quality of traffic operations.
Originality/value
The functional relationships between hourly and annual air traffic volumes and between capacity and delay, can be used to properly assess airport expansion projects or to optimize resource allocation tasks. This study offers new evidence on the nature of airport capacity and the dynamics of air traffic design hours and delay.
Details
Keywords
Álvaro Rodríguez-Sanz and Luis Rubio-Andrada
Airport capacity constraints lead to operational congestion and delays, which have become major threats to the aviation industry. They impose large costs on airlines and their…
Abstract
Purpose
Airport capacity constraints lead to operational congestion and delays, which have become major threats to the aviation industry. They impose large costs on airlines and their passengers. Uncertainty in demand or unexpected events can cause a mismatch between capacity and demand, resulting in either capacity oversupply, with a decrease in efficiency, or airport congestion over an extended period. Moreover, airport capacity is rather difficult to define due to its multifaceted and dynamic nature, and it depends both on the available infrastructure and on operating procedures. Additionally, traditional capacity management methods do not consider relevant behavioral economic challenges to conventional analysis, particularly failure of the expected utility hypotheses and dependence of valuations on reference points. This study aims to develop a preliminary framework to include economic concepts when evaluating expansions of airport capacity.
Design/methodology/approach
This paper reviews major opportunities in airport demand and capacity management from an economic perspective while appraising the challenges involved in airport capacity expansion processes that have not been fully completely in past studies. Although welfare economics provides the conceptual foundations for demand/capacity analyses, the authors integrate the findings regarding capacity definition, uncertainty management and behavioral economics into standard economics to guide the measurement of the airport capacity expansion problem.
Findings
The authors obtain several insights regarding airport capacity and demand management. First, airport capacity is a complex metric when evaluating airport expansion, and it depends both on the available infrastructure and on operating procedures. Furthermore, airport throughput is highly conditioned by factors that shape capacity and delay and shows significant variability when these factors are modified. Second, a marginal change in capacity at congested airports may have a great impact on demand distribution, airline competition, aircraft types, fares, operating revenues, route map and other characteristics of a given airport. Behavior after capacity expansion is highly reliant on the slot allocation models. Additionally, overall social welfare is usually affected after changes in infrastructure in terms of increased connectivity, economic benefits and negative externalities, including noise and local pollution. Third, on-time performance is clearly nonlinear, and thus sensitive to variations in demand and capacity. Finally, airport capacity and demand management involve a trade-off between mitigating congestion and maximizing capacity utilization, so decision-making tools are required to support and enhance policy and managerial choices. Three main challenges arise when developing new methods for evaluating airport expansions: the definition of capacity, the management of uncertainty in demand and the need to consider economic concepts.
Originality/value
This paper explores and produces an in-depth understanding of the problem of airport capacity and demand balance. The authors propose a preliminary framework that considers the challenges that have been previously identified and that, particularly, provides an economic perspective for airport capacity expansion processes. This framework is completed with a theoretical model to help policymakers and airport operators when faced with a capacity development decision.
Details
Keywords
Javier A. Pérez-Castán, Fernando Gómez Comendador, Álvaro Rodríguez-Sanz, Rosa M. Arnaldo Valdés and Jose Felix Alonso-Alarcon
This paper aims to assess the implications in safety levels by the integration of remotely piloted aircraft system (RPAS). The goal is to calculate the number of RPAS that can…
Abstract
Purpose
This paper aims to assess the implications in safety levels by the integration of remotely piloted aircraft system (RPAS). The goal is to calculate the number of RPAS that can jointly operate with conventional aircraft regarding conflict risk, without exceeding current safety levels.
Design/methodology/approach
This approach benchmarks a calculated level of safety (CLS) with a target level of safety (TLS). Monte Carlo (MC) simulations quantify the TLS based on the current operation of conventional aircraft. Then, different experiments calculate the CLS associated with combinations of conventional aircraft and RPAS. MC simulations are performed based on probabilistic distributions of aircraft performances, entry times and geographical distribution. The safety levels are based on a conflict risk model because the safety metrics are the average number of conflicts and average conflict duration.
Findings
The results provide restrictions to the number of RPAS that can jointly operate with conventional aircraft. The TLS is quantified for four conventional aircraft. MC simulations confirm that the integration of RPAS demands a reduction in the total number of aircraft. The same number of RPAS than conventional aircraft shows an increase over 90% average number of conflicts and 300% average conflict time.
Research limitations/implications
The methodology is applied to one flight level of en-route airspace without considering climbing or descending aircraft.
Originality/value
This paper is one of the most advanced investigations performed to quantify the number of RPAS that can be safely integrated into non-segregated airspace, which is one of the challenges for the forthcoming integration of RPAS. Particularly, Europe draws to allow operating RPAS and conventional aircraft in non-segregated airspace by 2025, but this demanding perspective entails a thorough analysis of operational and safety aspects involved.
Details
Keywords
Álvaro Rodríguez-Sanz, Rosa Maria M. Arnaldo Valdes, Javier A. Pérez-Castán, Pablo López Cózar and Victor Fernando Gómez Comendador
Airports are limited in terms of capacity. Particularly, runways can only accommodate a certain number of movements (arrivals and departures) while ensuring safety and determined…
Abstract
Purpose
Airports are limited in terms of capacity. Particularly, runways can only accommodate a certain number of movements (arrivals and departures) while ensuring safety and determined operational requirements. In such a constrained operating environment, any reduction in system capacity results in major delays with significant costs for airlines and passengers. Therefore, the efficient operation of airports is a critical cornerstone for demand and delay management of the whole air transportation system. Runway scheduling deals with the sequencing of arriving and departing aircraft at airports such that a predefined objective is optimized subject to several operational constraints, like the dependency of separation on the leading and trailing aircraft type or the runway occupancy time. This study aims to develop a model that acts as a tactical runway scheduling methodology for reducing delays while managing runway usage.
Design/methodology/approach
By considering real airport performance data with scheduled and actual movements, as well as arrival/departure delays, this study presents a robust model together with an optimization algorithm, which incorporates the knowledge of uncertainty into the tactical operational step. The approach transforms the planning problem into an assignment problem with side constraints. The coupled landing/take-off problem is solved to optimality by exploiting a time-indexed (0, 1) formulation for the problem. The Binary Integer Linear Programming approach allows to include multi-criteria and multi-constraints levels and, even with some major simplifications, provides fewer sequence changes and target time updates, when compared to the usual approach in which the plan is simply updated in case of infeasibility. Thus, the use of robust optimization leads to a protection against tactical uncertainties, reduces delays and achieves more stable operations.
Findings
This model has been validated with real data from a large international European airport in different traffic scenarios. Results are compared to the actual sequencing of flights and show that the algorithm can significantly contribute to the reduction of delay, while adhering as much as possible to the operative procedures and constraints, and to the objectives of the airport stakeholders. Computational experiments performed on the case study illustrate the benefits of this arrival/departure integrated approach: the proposed algorithm significantly reduces weighted aircraft delay and computes efficient runway schedule solutions within a few seconds and with little computational effort. It can be adopted as a decision-making tool in the tactical stage. Furthermore, this study presents operational insights regarding demand and delay management based on the results of this work.
Originality/value
Scheduling arrivals and departures at runways is a complex problem that needs to address diverse and often competing considerations among involved flights. In the context of the Airport Collaborative Decision Making programme, airport operators and air navigation service providers require arrival and departure management tools that improve aircraft flows at airports. Airport runway optimization, as the main element that combines airside and groundside operations, is an ongoing challenge for air traffic management.
Details
Keywords
Javier A. Pérez-Castán, Fernando Gómez Comendador, Álvaro Rodríguez-Sanz, Rosa M. Arnaldo Valdés and Jaime Torrecilla
The purpose of this paper is to focus on the development of conflict-resolution algorithms between Remotely Piloted Aircraft System (RPAS) and conventional aircraft. The goal of…
Abstract
Purpose
The purpose of this paper is to focus on the development of conflict-resolution algorithms between Remotely Piloted Aircraft System (RPAS) and conventional aircraft. The goal of the conflict-resolution algorithm is to estimate the minimum protection distance (MPD) which is required to avoid a potential conflict.
Design/methodology/approach
The conflict-resolution algorithms calculate the last location at which an RPAS must start climbing to avoid a separation minima infringement. The RPAS maneuvers to prevent the conventional aircraft based on the kinematic equations. The approach selects two parameters to model the conflict-geometry: the path-intersection angle and the Rate of Climb (ROCD).
Findings
Results confirmed that the aircraft pair flying in opposition was the worst scenario because the MPD reached its maximum value. The best value of the MPD is about 12 Nautical Miles to ensure a safe resolution of a potential conflict. Besides, variations of the ROCD concluded that the relation between the ROCD and the MPD is not proportional.
Research limitations/implications
The primary limitation is that the conflict-resolution algorithms are designed in a theoretical framework without bearing in mind other factors such as communications, navigation capacity, wind and pilot errors among others. Further work should introduce these concepts to determine how the MPD varies and affects air traffic safety. Moreover, the relation between an ROCD requirement and the MPD will have an impact on regulations.
Practical implications
The non-linear relation between the MPD and the ROCD could be the pillar to define a standardized MPD in the future for RPAS systematic integration. To accomplish this standard, RPAS could have to fulfil a requirement of minimum ROCD until a specified flight level.
Originality/value
This paper is the first approach to quantify the Minimum Protection Distance between RPAS and conventional aircraft, and it can serve the aeronautical community to define new navigation requirements for RPAS.
Details
Keywords
Monica Arranz Moneo, Javier Alberto Pérez-Castán, Victor Fernando Gomez Comendador, Álvaro Rodríguez-Sanz and Rosa María Arnaldo Valdes
This paper aims to analyse remotely piloted aircraft system (RPAS) integration in non-segregated terminal airspace. This work aims to identify the potential airspace volumes where…
Abstract
Purpose
This paper aims to analyse remotely piloted aircraft system (RPAS) integration in non-segregated terminal airspace. This work aims to identify the potential airspace volumes where a free operation of RPAS can be developed by analysing the airspace design of the terminal airspace.
Design/methodology/approach
The methodology considers five crucial elements of the airspace design: obstacles, prohibited, restricted and dangerous zones, aerodrome zones, departing and arriving procedures and visual corridors. Free operation of RPAS is performed in those airspace volumes that no interaction with instrumental flight rules (IFR) flights is expected. Free RPAS airspace volumes are separated through current IFR separation minima.
Findings
The results show there is a significant amount of available airspace that RPAS can operate without interaction with conventional aircraft. The more significant risks are allocated by the limitations imposed by departing and arriving procedures in the terminal airspace.
Research limitations/implications
The methodology is applied to medium-dense terminal airspace. This work assumes RPAS can perform visual or instrumental flights.
Originality/value
RPAS is a capital issue for the majority of aviation actors. This work underlay the further development of a methodology regarding airspace design for RPAS in a terminal control area.
Details
Keywords
Álvaro Rodríguez-Sanz, Cecilia Claramunt Puchol, Javier A. Pérez-Castán, Fernando Gómez Comendador and Rosa M. Arnaldo Valdés
The current air traffic management (ATM) operational approach is changing; “time” is now integrated as an additional fourth dimension on trajectories. This notion will impose on…
Abstract
Purpose
The current air traffic management (ATM) operational approach is changing; “time” is now integrated as an additional fourth dimension on trajectories. This notion will impose on aircraft the compliance of accurate arrival times over designated checkpoints (CPs), called time windows (TWs). This paper aims to clarify the basic requirements and foundations for the practical implementation of this functional framework.
Design/methodology/approach
This paper reviews the operational deployment of 4D trajectories, by defining its relationship with other concepts and systems of the future ATM and communications, navigation and surveillance (CNS) context. This allows to establish the main tools that should be considered to ease the application of the 4D-trajectories approach. This paper appraises how 4D trajectories must be managed and planned (negotiation, synchronization, modification and verification processes). Then, based on the evolution of a simulated 4D trajectory, the necessary corrective measures by evaluating the degradation tolerances and conditions are described and introduced.
Findings
The proposed TWs model can control the time tolerance within less than 100 s along the passing CPs of a generic trajectory, which is in line with the expected future ATM time-performance requirements.
Originality/value
The main contribution of this work is the provision of a holistic vision of the systems and concepts that will be necessary to implement the new 4D-trajectory concept efficiently, thus enhancing performance. It also proposes tolerance windows for trajectory degradation, to understand both when an update is necessary and what are the conditions required for pilots and air traffic controllers to provide this update.
Details
Keywords
Álvaro Rodríguez-Sanz, Fernando Gómez Comendador, Rosa M. Arnaldo Valdés, Javier A. Pérez-Castán, Pablo González García and Mar Najar Godoy Najar Godoy
The use of the 4D trajectory operational concept in the future air traffic management (ATM) system will require the aircraft to meet very accurately an arrival time over a…
Abstract
Purpose
The use of the 4D trajectory operational concept in the future air traffic management (ATM) system will require the aircraft to meet very accurately an arrival time over a designated checkpoint. To do this, time intervals known as time windows (TW) are defined. The purpose of this paper is to develop a methodology to characterise these TWs and to manage the uncertainty associated with the evolution of 4D trajectories.
Design/methodology/approach
4D trajectories are modelled using a point mass model and EUROCONTROL’s BADA methodology. The authors stochastically evaluate the variability of the parameters that influence 4D trajectories using Monte Carlo simulation. This enables the authors to delimit TWs for several checkpoints. Finally, the authors set out a causal model, based on a Bayesian network approach, to evaluate the impact of variations in fundamental parameters at the chosen checkpoints.
Findings
The initial results show that the proposed TW model limits the deviation in time to less than 27 s at the checkpoints of an en-route segment (300 NM).
Practical implications
The objective of new trajectory-based operations is to efficiently and strategically manage the expected increase in air traffic volumes and to apply tactical interventions as a last resort only. We need new tools to support 4D trajectory management functions such as strategic and collaborative planning. The authors propose a novel approach for to ensure aircraft punctuality.
Originality/value
The main contribution of the paper is the development of a model to deal with uncertainty and to increase predictability in 4D trajectories, which are key elements of the future airspace operational environment.
Details