Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 November 2024

Ping Zou, Zhiyu Dong, Ruize Qin, Xin Yao and Peng Cui

This paper discusses the applicability of different occupational health risk assessment (OHRA) methods in assessing noise hazards during the production phase of assembled precast…

10

Abstract

Purpose

This paper discusses the applicability of different occupational health risk assessment (OHRA) methods in assessing noise hazards during the production phase of assembled precast concrete (PC) components and makes targeted recommendations based on the assessment results from multiple perspectives to reduce noise hazards in this phase.

Design/methodology/approach

In this paper, the noise levels of various plant operations are measured on-site and the actual working conditions of plant workers are investigated. Then, four distinct occupational health risk assessment (HRA) models are used to estimate the risk of noise hazards during the production of PC components. Finally, the results obtained from the various models are analyzed and discussed, and then the most appropriate method for assessing noise hazards at this stage is chosen accordingly.

Findings

The noise exposure levels of workers in the four processes of steel processing, concrete mixing, concrete vibrating and mold removal exceeded occupational exposure limits. Similarly, the risk associated with these four processes is relatively elevated. For risk assessment (RA) of noise hazards in the production phase of assembled PC components, both the Australian RA model and the occupational hazard risk index method can be used, with the latter being more applicable.

Originality/value

The assessment results acquired in this paper can serve as a reference for the government and other relevant agencies when determining inspection priorities. In addition, the measures and recommendations outlined in this paper serve as a guide for businesses and government agencies to strengthen the noise management in the production stage of PC components, thereby reducing the noise hazards in the production stage of assembled PC components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Article
Publication date: 27 February 2024

Zhiyu Dong, Ruize Qin, Ping Zou, Xin Yao, Peng Cui, Fan Zhang and Yizhou Yang

The occupational health risk associated with the production of prefabricated concrete components is often overlooked. This paper will use a damage assessment and cyclic mitigation…

123

Abstract

Purpose

The occupational health risk associated with the production of prefabricated concrete components is often overlooked. This paper will use a damage assessment and cyclic mitigation (DACM) model to provide individualized exposure risk assessment and corresponding mitigation management measures for workers who are being exposed.

Design/methodology/approach

The DACM model is proposed based on the concept of life cycle assessment (LCA). The model uses Monte-Carlo simulation for uncertainty risk assessment, followed by quantitative damage assessment using disability-adjusted life year (DALY). Lastly, sensitivity analysis is used to identify the parameters with the greatest impact on health risks.

Findings

The results show that the dust concentration is centered around the mean, and the fitting results are close to normal distribution, so the mean value can be used to carry out the calculation of risk. However, calculations using the DACM model revealed that there are still some work areas at risk. DALY damage is most severe in concrete production area. Meanwhile, the inhalation rate (IR), exposure duration (ED), exposure frequency (EF) and average exposure time (AT) showed greater impacts based on the sensitivity analysis.

Originality/value

Based on the comparison, the DACM model can determine that the potential occupational health risk of prefabricated concrete component (PC) factory and the risk is less than that of on-site construction. It synthesizes field research and simulation to form the entire assessment process into a case-base system with the depth of the cycle, which allows the model to be continuously adjusted to reduce the occupational health damage caused by production pollution exposure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Access

Year

Content type

Earlycite article (2)
1 – 2 of 2
Per page
102050