Search results

1 – 2 of 2
Article
Publication date: 10 September 2024

Dan Feng, Zhenyu Yin, Xiaohui Wang, Feiqing Zhang and Zisong Wang

Traditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the…

Abstract

Purpose

Traditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the stability of visual SLAM in complex dynamic environments through semantic segmentation and its optimization.

Design/methodology/approach

This paper proposes a real-time visual SLAM system for complex dynamic environments based on YOLOv5s semantic segmentation, named YLS-SLAM. The system combines semantic segmentation results and the boundary semantic enhancement algorithm. By recognizing and completing the semantic masks of dynamic objects from coarse to fine, it effectively eliminates the interference of dynamic feature points on the pose estimation and enhances the retention and extraction of prominent features in the background, thereby achieving stable operation of the system in complex dynamic environments.

Findings

Experiments on the Technische Universität München and Bonn data sets show that, under monocular and Red, Green, Blue - Depth modes, the localization accuracy of YLS-SLAM is significantly better than existing advanced dynamic SLAM methods, effectively improving the robustness of visual SLAM. Additionally, the authors also conducted tests using a monocular camera in a real industrial production environment, successfully validating its effectiveness and application potential in complex dynamic environment.

Originality/value

This paper combines semantic segmentation algorithms with boundary semantic enhancement algorithms to effectively achieve precise removal of dynamic objects and their edges, while ensuring the system's real-time performance, offering significant application value.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2024

Xin Fan, Yongshou Liu, Zongyi Gu and Qin Yao

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional…

Abstract

Purpose

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional methods struggle to conduct a reliability analysis. Therefore, this paper proposes a reliability analysis method aimed at enhancing the efficiency of rare event analysis, using the widely recognized Relevant Vector Machine (RVM).

Design/methodology/approach

Drawing from the principles of importance sampling (IS), this paper employs Harris Hawks Optimization (HHO) to ascertain the optimal design point. This approach not only guarantees precision but also facilitates the RVM in approximating the limit state surface. When the U learning function, designed for Kriging, is applied to RVM, it results in sample clustering in the design of experiment (DoE). Therefore, this paper proposes a FU learning function, which is more suitable for RVM.

Findings

Three numerical examples and two engineering problem demonstrate the effectiveness of the proposed method.

Originality/value

By employing the HHO algorithm, this paper innovatively applies RVM in IS reliability analysis, proposing a novel method termed RVM-HIS. The RVM-HIS demonstrates exceptional computational efficiency, making it eminently suitable for rare events reliability analysis with implicit performance function. Moreover, the computational efficiency of RVM-HIS has been significantly enhanced through the improvement of the U learning function.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2