Peng Xiao, Haiyan Zhang, Shimin Yin and Zhe Xia
This study aims to explore the role of international ambidexterity (IA) in improving the innovation capability of emerging market multinationals. In particular, the main purpose…
Abstract
Purpose
This study aims to explore the role of international ambidexterity (IA) in improving the innovation capability of emerging market multinationals. In particular, the main purpose of this research is to study the relationship amongst digitalisation, IA and innovation performance (IP) amongst multinational enterprises in China’s healthcare industry.
Design/methodology/approach
The data for this investigation were collected from 134 listed companies in China’s healthcare industry during the study period. This study tested the hypotheses by constructing a two-way fixed-effects model.
Findings
The results show that both the balance dimension and the combined dimension of IA have significant positive effects on IP. Digitalisation not only has a direct positive effect on IP but also positively moderates the positive correlation between IA and IP.
Originality/value
Previous studies have not captured the relationship between ambidexterity, digitalisation and IP, and this study helps to fill in the gap and examine these associations in China’s healthcare industry. The results of this study provide valuable insights for healthcare industry managers to understand the role of ambidexterity and digitalisation in innovation in the context of internationalisation.
Details
Keywords
Ran Li, Simin Wang, Zhe Sun, Aohai Zhang, Yuxuan Luo, Xingyi Peng and Chao Li
Depression has become one of the most serious and prevalent mental health problems worldwide. The rise and popularity of social networks such as microblogs provides a wealth of…
Abstract
Purpose
Depression has become one of the most serious and prevalent mental health problems worldwide. The rise and popularity of social networks such as microblogs provides a wealth of psychological data for early depression detection. Language use patterns reflect emotional states and psychological traits. Differences in language use between depressed and general users may help predict and diagnose early depression. Existing work focuses on depression detection using users' social textual emotion expressions, with less psychology-related knowledge.
Design/methodology/approach
In this paper, we propose an RNN-capsule-based depression detection method for microblog users that improves depression detection accuracy in social texts by combining textual emotional information with knowledge related to depression pathology. Specifically, we design a multi-classification RNN capsule that enhances emotion expression features in utterances and improves classification performance of depression-related emotional features. Based on user emotion annotations over time, we use integrated learning to detect depression in a user’s social text by combining the analysis results with components such as emotion change vector, emotion causality analysis, depression lexicon and the presence of surprising emotions.
Findings
In our experiments, we test the accuracy of RNN capsules for emotion classification tasks and then validate the effectiveness of different depression detection components. Finally, we achieved 83% depression detection accuracy on real datasets.
Originality/value
The paper overcomes the limitations of social text-based depression detection by incorporating more psychological background knowledge to enhance the early detection success rate of depression.
Details
Keywords
Yun Li, Zhe Cheng, Jiangbin Yin, Zhenshan Yang and Ming Xu
Infrastructure financialization plays a critical role in infrastructure development and urban growth around the world. However, on the one hand, the existing research on the…
Abstract
Purpose
Infrastructure financialization plays a critical role in infrastructure development and urban growth around the world. However, on the one hand, the existing research on the infrastructure financialization focuses on qualitative and lacks quantitative country-specific studies. On the other hand, the spatial heterogeneity and influencing factors of infrastructure financialization are ignored. This study takes China as a typical case to identify and analyze the spatial characteristics, development process and impact factors of infrastructure financialization.
Design/methodology/approach
To assess the development and characteristics of infrastructure financialization in China, this study constructs an evaluation index of infrastructure financialization based on the infrastructure financialization ratio (IFR). This study then analyzes the evolution process and spatial pattern of China's infrastructure financialization through the spatial analysis method. Furthermore, this study identifies and quantitatively analyzes the influencing factors of infrastructure financialization based on the spatial Dubin model. Finally, this study offers a policy suggestion as a governance response.
Findings
The results demonstrate that infrastructure financialization effectively promotes the development of infrastructure in China. Second, there are significant spatial differences in China’s infrastructure financialization. Third, many factors affect infrastructure financialization, with government participation having the greatest impact. In addition, over-financialization of infrastructure has the potential to lead to government debt risks, which is a critical challenge the Chinese Government must address. Finally, this study suggests that infrastructure financialization requires more detailed, tailored,and place-specific policy interventions by the government.
Originality/value
This study not only contributes to enriching the knowledge body of global financialization theory but also helps optimize infrastructure investment and financing policies in China and provides peer reference for other developing countries.