Search results

1 – 4 of 4
Article
Publication date: 2 August 2024

Yang Liu, Yuefan Hu, Dongxiang Xie, Yongjie Zhang and Jianqiang Chen

The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.

21

Abstract

Purpose

The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.

Design/methodology/approach

The paper proposes a lightweight interactive generation approach for unstructured surface mesh and presents several key technologies to support this approach.

Findings

The experimental results show that the proposed approach is feasible for unstructured meshes and it can accelerate the mesh generation process.

Research limitations/implications

More geometric defects should be covered, and more convenient and efficient interactive means need to be provided.

Practical implications

The proposed approach and key technologies are implemented in NNW-GridStar.UG, which is the unstructured version of the mesh generation software of National Numerical Windtunnel (NNW).

Originality/value

This paper proposes a lightweight interactive approach for unstructured surface mesh generation, which can speed up mesh generation.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2024

Gang Wei, Zhiyuan Mu, Weihao Feng, Yongjie Qi and Binglai Guo

The aim of this study is to investigate the horizontal displacement effects of foundation pit excavation on adjacent metro stations and shield tunnel composite structures. It…

Abstract

Purpose

The aim of this study is to investigate the horizontal displacement effects of foundation pit excavation on adjacent metro stations and shield tunnel composite structures. It seeks to develop a theoretical calculation method capable of accurately assessing these engineering impacts, aiming to provide practical assistance for engineering applications.

Design/methodology/approach

This study introduces a model for shield tunnel segments incorporating rotation and misalignment, considering the constraints of metro stations. It establishes a displacement model for tunnel-station combinations during foundation pit excavation, deriving a formula for calculating station-proximal tunnel horizontal displacements. The method's accuracy is validated against field data from three engineering cases. The research also explores variations in tunnel displacement, inter-ring shear force, misalignment and rotation angle under different spatial relationships between pits, tunnels and stations.

Findings

This study models uneven deformation between stations and tunnels due to bending stiffness and shear constraints. It enhances the misalignment model with station-induced shear effects and introduces coefficients for their mutual interaction. Results show varied responses based on pit-station-tunnel positioning: minimal displacement near pit edges (coefficients around 0.1) and significant effects near pit centers (coefficients from 0.4 to 0.5). “Whip effect” from station constraints affects tunnel displacement, shear force, misalignment and rotation, with fluctuations decreasing with distance from excavation areas.

Originality/value

This study demonstrates significant originality and value. It introduces a novel displacement model for tunnel-station combinations considering station constraints, addressing theoretical calculations of horizontal displacement effects from foundation pit excavation on metro stations and shield tunnel structures. Through validation with field data and parameter studies, the concept of influence coefficients is proposed, offering insights into variations in structural responses under different spatial relationships. This research provides crucial technical support and decision-making guidance for optimizing designs and facilitating practical construction in similar engineering projects.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2024

Chong Wu, Xiaofang Chen and Yongjie Jiang

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of…

Abstract

Purpose

While the Chinese securities market is booming, the phenomenon of listed companies falling into financial distress is also emerging, which affects the operation and development of enterprises and also jeopardizes the interests of investors. Therefore, it is important to understand how to accurately and reasonably predict the financial distress of enterprises.

Design/methodology/approach

In the present study, ensemble feature selection (EFS) and improved stacking were used for financial distress prediction (FDP). Mutual information, analysis of variance (ANOVA), random forest (RF), genetic algorithms, and recursive feature elimination (RFE) were chosen for EFS to select features. Since there may be missing information when feeding the results of the base learner directly into the meta-learner, the features with high importance were fed into the meta-learner together. A screening layer was added to select the meta-learner with better performance. Finally, Optima hyperparameters were used for parameter tuning by the learners.

Findings

An empirical study was conducted with a sample of A-share listed companies in China. The F1-score of the model constructed using the features screened by EFS reached 84.55%, representing an improvement of 4.37% compared to the original features. To verify the effectiveness of improved stacking, benchmark model comparison experiments were conducted. Compared to the original stacking model, the accuracy of the improved stacking model was improved by 0.44%, and the F1-score was improved by 0.51%. In addition, the improved stacking model had the highest area under the curve (AUC) value (0.905) among all the compared models.

Originality/value

Compared to previous models, the proposed FDP model has better performance, thus bridging the research gap of feature selection. The present study provides new ideas for stacking improvement research and a reference for subsequent research in this field.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 4 of 4