Search results

1 – 4 of 4
Open Access
Article
Publication date: 10 October 2024

Yahui Zhang

The wavelet neural network (WNN) has the drawbacks of slow convergence speed and easy falling into local optima in data prediction. Although the artificial bee colony (ABC…

Abstract

Purpose

The wavelet neural network (WNN) has the drawbacks of slow convergence speed and easy falling into local optima in data prediction. Although the artificial bee colony (ABC) algorithm has strong global optimization ability and fast convergence speed, it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.

Design/methodology/approach

This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model. Based on the example of the Jinan Yuhan underground tunnel project, the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed, and the analysis results are compared with the actual detection amount.

Findings

The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data, with a maximum relative error of only 4.73%. On this basis, the results show that the statistical features of ABC-WNN are the lowest, with the errors at 0.566 and 0.573, compared with the single back propagation (BP) neural network model and WNN model. Therefore, it can be derived that the ABC-WNN model has higher prediction accuracy, better computational stability and faster convergence speed for deformation.

Originality/value

This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels. This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multi-arch tunnels and small clearance tunnels. It can provide a new and effective way for deformation prediction in similar projects.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 18 November 2024

Yahui Zhang, Aimin Li, Haopeng Li, Fei Chen and Ruiying Shen

Wheeled robots have been widely used in People’s Daily life. Accurate positioning is the premise of autonomous navigation. In this paper, an optimization-based…

Abstract

Purpose

Wheeled robots have been widely used in People’s Daily life. Accurate positioning is the premise of autonomous navigation. In this paper, an optimization-based visual-inertial-wheel odometer tightly coupled system is proposed, which solves the problem of failure of visual inertia initialization due to unobservable scale.The aim of this paper is to achieve robust localization of visually challenging scenes.

Design/methodology/approach

During system initialization, the wheel odometer measurement and visual-inertial odometry (VIO) fusion are initialized using maximum a posteriori (MAP). Aiming at the visual challenge scene, a fusion method of wheel odometer and inertial measurement unit (IMU) measurement is proposed, which can still be robust initialization in the scene without visual features. To solve the problem of low track accuracy caused by cumulative errors of VIO, the local and global positioning accuracy is improved by integrating wheel odometer data. The system is validated on a public data set.

Findings

The results show that our system performs well in visual challenge scenarios, can achieve robust initialization with high efficiency and improves the state estimation accuracy of wheeled robots.

Originality/value

To realize robust initialization of wheeled robot, wheel odometer measurement and vision-inertia fusion are initialized using MAP. Aiming at the visual challenge scene, a fusion method of wheel odometer and IMU measurement is proposed. To improve the accuracy of state estimation of wheeled robot, wheel encoder measurement and plane constraint information are added to local and global BA, so as to achieve refined scale estimation.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 November 2024

Lingzhi Yi, Kai Ren, Yahui Wang, Wei He, Hui Zhang and Zongping Li

To ensure the stable operation of ironmaking process and the quality and output of sinter, the multi-objective optimization of sintering machine batching process was carried out.

Abstract

Purpose

To ensure the stable operation of ironmaking process and the quality and output of sinter, the multi-objective optimization of sintering machine batching process was carried out.

Design/methodology/approach

The purpose of this study is to establish a multi-objective optimization model with iron taste content and batch cost as targets, constrained by field process requirements and sinter quality standards, and to propose an improved balance optimizer algorithm (LILCEO) based on a lens imaging anti-learning mechanism and a population redundancy error correction mechanism. In this method, the lens imaging inverse learning strategy is introduced to initialize the population, improve the population diversity in the early iteration period, avoid falling into local optimal in the late iteration period and improve the population redundancy error correction mechanism to accelerate the convergence rate in the early iteration period.

Findings

By selecting nine standard test functions of BT series for simulation experiments, and comparing with NSGA-?, MOEAD, EO, LMOCSO, NMPSO and other mainstream optimization algorithms, the experimental results verify the superior performance of the improved algorithm. The results show that the algorithm can effectively reduce the cost of sintering ingredients while ensuring the iron taste of sinter, which is of great significance for the comprehensive utilization and quality assurance of sinter iron ore resources.

Originality/value

An optimization model with dual objectives of TFe content and raw material cost was developed taking into account the chemical composition and quality indicators required by the blast furnace as well as factors such as raw material inventory and cost constraints. This model was used to adjust and optimize the sintering raw material ratio. Addressing the limitations of existing optimization algorithms for sintering raw materials including low convergence accuracy slow speed limited initial solution production and difficulty in practical application we proposed the LILCEO algorithm. Comparative tests with NSGA-III MOEAD EO LMOCSO and NMPSO algorithms demonstrated the superiority of the proposed algorithm. Practical applications showed that the proposed method effectively overcomes many limitations of the current manual raw material ratio model providing scientific and stable decision-making guidance for sintering production operations.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 March 2023

Arne Schuhbert, Hannes Thees and Harald Pechlaner

The below-average innovative capacity of the tourism sector raises the question on the potentials of digital business ecosystems (DBEs) to overcome these shortages at a…

Abstract

Purpose

The below-average innovative capacity of the tourism sector raises the question on the potentials of digital business ecosystems (DBEs) to overcome these shortages at a destination level – especially within a smart city environment. Using the example of the German Capital Berlin, this article aims to discuss both the possibilities and inhibitors of innovative knowledge-creation by building scenarios on one specific design option: the integration of digital deep learning (DL) functionalities and traditional organizational learning (OL) processes.

Design/methodology/approach

Using the qualitative GABEK-method, major characteristics of a DBE as resource-, platform- and innovation systems are analyzed toward their interactions with the construction of basic action models (as the basic building blocks of knowledge).

Findings

Against the background of the research findings, two scenarios are discussed for future evolution of the Berlin DBE, one building on cultural emulation as a trigger for optimized DL functionalities and one following the idea of cultural engineering supported by DL functionalities. Both scenarios focus specifically on the identified systemic inhibitors of innovative capabilities.

Research limitations/implications

While this study highlights the potential of the GABEK method to analyze mental models, separation of explicit and latent models still remains challenging – so does the reconstruction of higher order mental models which require a combined take on interview techniques in the future.

Originality/value

The resulting scenarios innovatively combine concepts from OL theory with the concept of DBE, thus indicating possible pathways into a tourism future where the limitations of human learning capacities could be compensated through the targeted support of general artificial intelligence (AI).

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 4 of 4