Search results

1 – 3 of 3
Article
Publication date: 23 May 2024

Mohamed Hessian, Alaa Mansour Zalata and Khaled Hussainey

This study examines the effect of non-audit fees (NAF) provisions on interest payments classification shifting. In addition, we investigate to what extent the NAF economic bonding…

Abstract

Purpose

This study examines the effect of non-audit fees (NAF) provisions on interest payments classification shifting. In addition, we investigate to what extent the NAF economic bonding and interest payments classification shifting is contingent on internal governance and firm financial well-being.

Design/methodology/approach

This study employed probit regression using a sample of UK non-financial firms indexed in FT UK (500) over the period from 2009 to 2017.

Findings

We find evidence that the economic bonding of NAF between external auditors and their clients is more likely to encourage managers in UK firms to manipulate operating cash flows through interest payment classification shifting. In addition, and interestingly, our results evince that classification-shifting may be the less costly and soft choice of managers in firms with strong governance and charging higher NAF. Furthermore, we show that financially distressed firms associated with their auditors in purchasing non-audit services are more prone to attempting to manipulate and engage in interest payments classification-shifting. Our result did not provide a significant effect of external auditor tenure on the interest payments classification shifting.

Research limitations/implications

Our findings are subject to the following limitations: First, this study uses a composite index to measure the quality of internal corporate governance. It focuses only on the board of directors, but this index does not reflect other internal governance mechanisms. Second, this study is subject to limited study time due to the implementation of key IFRS standards (IFRS 9 Financial Instruments and IFRS 15 Revenue from Contract with Customers) from 2018–2019.

Practical implications

This study was motivated by the UK’s Financial Reporting Council regulators' pressure on the Big 4 audit firms to move more audit time into main auditing activities, reduce cross-selling to audit clients and separate their audit practices by 2024. Overall, we provide new evidence that directs a close spotlight on the threats of NAF that are potentially useful to regulators, shareholders and investors.

Originality/value

It is motivated by the UK’s Financial Reporting Council regulators' pressure on the Big 4 to move more audit firm time into main auditing activities, reduce cross-selling to audit clients and separate their audit practices by 2024. Overall, we provide new evidence that directs a close spotlight on the threats of NAS that are potentially useful to regulators, shareholders and investors.

Details

Journal of Applied Accounting Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0967-5426

Keywords

Article
Publication date: 26 September 2024

Gokhan Kazar

The cash flow from government agencies to contractors, called progress payment, is a critical step in public projects. The delays in progress payments significantly affect the…

Abstract

Purpose

The cash flow from government agencies to contractors, called progress payment, is a critical step in public projects. The delays in progress payments significantly affect the project performance of contractors and lead to conflicts between two parties in the Turkish construction industry. Although some previous studies focused on the issues in internal cash flows (e.g. inflows and outflows) of construction companies, the context of cash flows from public agencies to contractors in public projects is still unclear. Therefore, the primary objective of this study is to develop and test diverse machine learning-based predictive models on the progress payment performance of Turkish public agencies and improve the predictive performance of these models with two different optimization algorithms (e.g. first-order and second-order). In addition, this study explored the attributes that make the most significant contribution to predicting the payment performance of Turkish public agencies.

Design/methodology/approach

In total, project information of 2,319 building projects tendered by the Turkish public agencies was collected. Six different machine learning algorithms were developed and two different optimization methods were applied to achieve the best machine learning (ML) model for Turkish public agencies' cash flow performance in this study. The current research tested the effectiveness of each optimization algorithm for each ML model developed. In addition, the effect size achieved in the ML models was evaluated and ranked for each attribute, so that it is possible to observe which attributes make significant contributions to predicting the cash flow performance of Turkish public agencies.

Findings

The results show that the attributes “inflation rate” (F5; 11.2%), “consumer price index” (F6; 10.55%) and “total project duration” (T1; 10.9%) are the most significant factors affecting the progress payment performance of government agencies. While decision tree (DT) shows the best performance among ML models before optimization process, the prediction performance of models support vector machine (SVM) and genetic algorithm (GA) has been significantly improved by Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based Quasi-Newton optimization algorithm by 14.3% and 18.65%, respectively, based on accuracy, AUROC (Area Under the Receiver Operating Characteristics) and F1 values.

Practical implications

The most effective ML model can be used and integrated into proactive systems in real Turkish public construction projects, which provides management of cash flow issues from public agencies to contractors and reduces conflicts between two parties.

Originality/value

The development and comparison of various predictive ML models on the progress payment performance of Turkish public owners in construction projects will be the first empirical attempt in the body of knowledge. This study has been carried out by using a high number of project information with diverse 27 attributes, which distinguishes this study in the body of knowledge. For the optimization process, a new hyper parameter tuning strategy, the Bayesian technique, was adopted for two different optimization methods. Thus, it is available to find the best predictive model to be integrated into real proactive systems in forecasting the cash flow performance of Turkish public agencies in public works projects. This study will also make novel contributions to the body of knowledge in understanding the key parameters that have a negative impact on the payment progress of public agencies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 August 2024

S. Punitha and K. Devaki

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student…

Abstract

Purpose

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student performance is essential for educators to provide targeted support and guidance to students. By analyzing various factors like attendance, study habits, grades, and participation, teachers can gain insights into each student’s academic progress. This information helps them tailor their teaching methods to meet the individual needs of students, ensuring a more personalized and effective learning experience. By identifying patterns and trends in student performance, educators can intervene early to address any challenges and help students acrhieve their full potential. However, the complexity of human behavior and learning patterns makes it difficult to accurately forecast how a student will perform. Additionally, the availability and quality of data can vary, impacting the accuracy of predictions. Despite these obstacles, continuous improvement in data collection methods and the development of more robust predictive models can help address these challenges and enhance the accuracy and effectiveness of student performance predictions. However, the scalability of the existing models to different educational settings and student populations can be a hurdle. Ensuring that the models are adaptable and effective across diverse environments is crucial for their widespread use and impact. To implement a student’s performance-based learning recommendation scheme for predicting the student’s capabilities and suggesting better materials like papers, books, videos, and hyperlinks according to their needs. It enhances the performance of higher education.

Design/methodology/approach

Thus, a predictive approach for student achievement is presented using deep learning. At the beginning, the data is accumulated from the standard database. Next, the collected data undergoes a stage where features are carefully selected using the Modified Red Deer Algorithm (MRDA). After that, the selected features are given to the Deep Ensemble Networks (DEnsNet), in which techniques such as Gated Recurrent Unit (GRU), Deep Conditional Random Field (DCRF), and Residual Long Short-Term Memory (Res-LSTM) are utilized for predicting the student performance. In this case, the parameters within the DEnsNet network are finely tuned by the MRDA algorithm. Finally, the results from the DEnsNet network are obtained using a superior method that delivers the final prediction outcome. Following that, the Adaptive Generative Adversarial Network (AGAN) is introduced for recommender systems, with these parameters optimally selected using the MRDA algorithm. Lastly, the method for predicting student performance is evaluated numerically and compared to traditional methods to demonstrate the effectiveness of the proposed approach.

Findings

The accuracy of the developed model is 7.66%, 9.91%, 5.3%, and 3.53% more than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-1, and 7.18%, 7.54%, 5.43% and 3% enhanced than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-2.

Originality/value

The developed model recommends the appropriate learning materials within a short period to improve student’s learning ability.

1 – 3 of 3