Search results
1 – 3 of 3Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen
Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…
Abstract
Purpose
Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).
Design/methodology/approach
Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.
Findings
The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.
Originality/value
In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.
Details
Keywords
Songtao Qu, Qingyu Shi, Gong Zhang, Xinhua Dong and Xiaohua Xu
This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn…
Abstract
Purpose
This study aims to address the problem of low-temperature wave soldering in industry production with Sn-9Zn-2.5 Bi-1.5In alloys and develop qualified process parameters. Sn–Zn eutectic alloys are lead-free solders applied in consumer electronics due to their low melting point, high strength, and low cost. In the electronic assembly industry, Sn–Zn eutectic alloys have great potential for use.
Design/methodology/approach
This paper explored developing and implementing process parameters for low-temperature wave soldering of Sn–Zn alloys (SN-9ZN-2.5BI-1.5 In). A two-factor, three-level design of the experiments experiment was designed to simulate various conditions parameters encountered in Sn–Zn soldering, developed the nitrogen protection device of waving soldering and proposed the optimal process parameters to realize mass production of low-temperature wave soldering on Sn–Zn alloys.
Findings
The Sn-9Zn-2.5 Bi-1.5In alloy can overcome the Zn oxidation problem, achieve low-temperature wave soldering and meet IPC standards, but requires the development of nitrogen protection devices and the optimization of a series of process parameters. The design experiment reveals that preheating temperature, soldering temperature and flux affect failure phenomena. Finally, combined with the process test results, an effective method to support mass production.
Research limitations/implications
In term of overcome Zn’s oxidation characteristics, anti-oxidation wave welding device needs to be studied. Various process parameters need to be developed to achieve a welding process with lower temperature than that of lead solder(Sn–Pb) and lead-free SAC(Sn-0.3Ag-0.7Cu). The process window of Sn–Zn series alloy (Sn-9Zn-2.5 Bi-1.5In alloy) is narrow. A more stringent quality control chart is required to make mass production.
Practical implications
In this research, the soldering temperature of Sn-9Zn-2.5 Bi-1.5In is 5 °C and 25 °C lower than Sn–Pb and Sn-0.3Ag-0.7Cu(SAC0307). To the best of the authors’ knowledge, this work was the first time to apply Sn–Zn solder alloy under actual production conditions on wave soldering, which was of great significance for the study of wave soldering of the same kind of solder alloy.
Social implications
Low-temperature wave soldering can supported green manufacturing widely, offering a new path to achieve carbon emissions for many factories and also combat to international climate change.
Originality/value
There are many research papers on Sn–Zn alloys, but methods of achieving low-temperature wave soldering to meet IPC standards are infrequent. Especially the process control method that can be mass-produced is more challenging. In addition, the metal storage is very high and the cost is relatively low, which is of great help to provide enterprise competitiveness and can also support the development of green manufacturing, which has a good role in promoting the broader development of the Sn–Zn series.
Details
Keywords
Lina Gharaibeh, Björn Lantz and Kristina Maria Eriksson
This study addresses the critical imperative of quantifying building information modeling (bimalliance) benefits by augmenting existing methodologies, with a focus on…
Abstract
Purpose
This study addresses the critical imperative of quantifying building information modeling (bimalliance) benefits by augmenting existing methodologies, with a focus on monetization. Engaging industry practitioners, the research develops a comprehensive framework through an exhaustive literature review and a survey in the Swedish construction industry, incorporating insights from 128 respondents.
Design/methodology/approach
The framework, validated by industry experts, systematically assesses tangible BIM benefits against associated costs. It introduces a novel method in construction, addressing the lack of a unified approach. The resulting framework facilitates nuanced feasibility determinations by systematically evaluating BIM benefits against costs.
Findings
Despite its acknowledged limitations, the framework effectively captures a comprehensive range of costs and benefits, providing a more accurate and detailed estimation of BIM’s impact on project outcomes.
Practical implications
With practical implications, the framework enhances BIM understanding and application, contributing to effective project management throughout the construction supply chain lifecycle. Moreover, it aims to improve efficacy within the architecture, engineering, construction and operations industry.
Originality/value
The study empowers organizations and decision-makers with a bespoke tool for evaluating BIM feasibility, contributing to decision-making through a clarified numerical representation.
Details