Search results

1 – 4 of 4
Article
Publication date: 25 June 2024

Jiahao Zhang and Yu Wei

This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.

Abstract

Purpose

This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.

Design/methodology/approach

The study employs the TVP-VAR extension of the spillover index framework to scrutinize the information spillovers among the energy, agriculture, metal, and carbon markets. Subsequently, the study explores practical applications of these findings, emphasizing how investors can harness insights from information spillovers to refine their investment strategies.

Findings

First, the CEA provide ample opportunities for portfolio diversification between the energy, agriculture, and metal markets, a desirable feature that the EUA does not possess. Second, a portfolio comprising exclusively energy and carbon assets often exhibits the highest Sharpe ratio. Nevertheless, the inclusion of agricultural and metal commodities in a carbon-oriented portfolio may potentially compromise its performance. Finally, our results underscore the pronounced advantage of minimum spillover portfolios; particularly those that designed minimize net pairwise volatility spillover, in the context of China's national carbon market.

Originality/value

This study addresses the previously unexplored intersection of information spillovers and portfolio diversification in major commodity markets, with an emphasis on the role of CEA.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 31 May 2023

Jiahao Liu, Xi Xu and Jing Liu

Although building information modeling (BIM) has brought competitive advantages and many new jobs, the BIM-related job market is still confusing in China, which will undermine the…

Abstract

Purpose

Although building information modeling (BIM) has brought competitive advantages and many new jobs, the BIM-related job market is still confusing in China, which will undermine the adoption of BIM. This paper aims to show what kinds of BIM-related jobs are there in China, what employers require and whether all BIM engineers are the same kind.

Design/methodology/approach

A text mining approach, structural topic model, was used to process the job descriptions of 1,221 BIM-related online job advertisements in China, followed by a cluster analysis based on it.

Findings

First, 10 topics of requirements with the impact of experience and educational background to them were found, namely, rendering software, international project, design, management, personal quality, experience, modeling, relation and certificate. Then, six types were clustered, namely, BIM modeler, BIM application engineer, BIM consultant, BIM manager, BIM developer and BIM designer. Finally, different kinds of BIM engineers proved this title was an expediency leading to confusion.

Originality/value

This paper can provide a clear and insightful look into the confusing and unheeded BIM-related job market in China and might help to cope with the abuse of job titles. It could also benefit both employers and candidates in their recruitment for better matching.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 4 of 4