Search results
1 – 3 of 3Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li and Yuexin Huang
In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine…
Abstract
Purpose
In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.
Design/methodology/approach
The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.
Findings
The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.
Originality/value
The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.
Details
Keywords
Xiaona Pang, Wenguang Yang, Wenjing Miao, Hanyu Zhou and Rui Min
Through the scientific and reasonable evaluation of the site selection of the emergency material reserve, the optimal site selection scheme is found, which provides reference for…
Abstract
Purpose
Through the scientific and reasonable evaluation of the site selection of the emergency material reserve, the optimal site selection scheme is found, which provides reference for the future emergency decision-making research.
Design/methodology/approach
In this paper, we have chosen three primary indicators and twelve secondary indicators to construct an assessment framework for the determination of suitable locations for storing emergency material reserves. By mean of the improved entropy weight-order relationship weight determination method, the evaluation model of kullback leibler-technique for order preference by similarity to an ideal solution (KL-TOPSIS) emergency material reserve location based on relative entropy is established. On this basis, 10 regional storage sites in Beijing are selected for evaluation.
Findings
The results show that the evaluation model of the location of emergency material reserve not only respects the objective knowledge, but also considers the subjective information of the experts, which makes the ranking result of the location of the emergency material reserve more accurate and reliable.
Originality/value
Firstly, the modification factor is added to the calculation formula of traditional entropy weight method to complete the improvement of entropy weight method. Secondly, the order relation analysis method is used to assign subjective weights to the indicators. The principle of minimum information entropy is introduced to determine the comprehensive weight of the index. Finally, KL distance and TOPSIS method are combined to determine the relative entropy and proximity degree of alternative solutions and positive and negative ideal solutions, and the scientific and effective of the method is proved by case study.
Details
Keywords
Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami
The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…
Abstract
Purpose
The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.
Design/methodology/approach
Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.
Findings
The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.
Originality/value
To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.
Details