Search results
1 – 3 of 3Jiming Hu, Zexian Yang, Jiamin Wang, Wei Qian, Cunwan Feng and Wei Lu
This study proposes a novel method utilising a speech-word pair bipartite network to examine the correlation structure between members of parliament (MPs) in the context of the…
Abstract
Purpose
This study proposes a novel method utilising a speech-word pair bipartite network to examine the correlation structure between members of parliament (MPs) in the context of the UK- China relationship.
Design/methodology/approach
We construct MP-word pair bipartite networks based on the co-occurrence relationship between MPs and words in their speech content. These networks are then mapped into monopartite MPs correlation networks. Additionally, the study calculates correlation network indicators and identifies MP communities and factions to determine the characteristics of MPs and their interrelation in the UK-China relationship. This includes insights into the distribution of key MPs, their correlation structure and the evolution and development trends of MP factions.
Findings
Analysis of the parliamentary speeches on China-related affairs in the British Parliament from 2011 to 2020 reveals that the distribution and interrelationship of MPs engaged in UK-China affairs are centralised and discrete, with a few core MPs playing an integral role in the UK-China relationship. Among them, MPs such as Lord Ahmad of Wimbledon, David Cameron, Lord Hunt of Chesterton and Lord Howell of Guildford formed factions with significant differences; however, the continuity of their evolution exhibits unstableness. The core MP factions, such as those led by Lord Ahmad of Wimbledon and David Cameron, have achieved a level of maturity and exert significant influence.
Research limitations/implications
The research has several limitations that warrant acknowledgement. First, we mapped the MP-word pair bipartite network into the MP correlation network for analysis without directly analysing the structure of MPs based on the bipartite network. In future studies, we aim to explore various types of analysis based on the proposed bipartite networks to provide more comprehensive and accurate references for studying UK-China relations. In addition, we seek to incorporate semantic-level analyses, such as sentiment analysis of MPs, into the MP-word -pair bipartite networks for in-depth analysis. Second, the interpretations of MP structures in the UK-China relationship in this study are limited. Consequently, expertise in UK-China relations should be incorporated to enhance the study and provide more practical recommendations.
Practical implications
Firstly, the findings can contribute to an objective understanding of the characteristics and connotations of UK-China relations, thereby informing adjustments of focus accordingly. The identification of the main factions in the UK-China relationship emphasises the imperative for governments to pay greater attention to these MPs’ speeches and social relationships. Secondly, examining the evolution and development of MP factions aids in identifying a country’s diplomatic focus during different periods. This can assist governments in responding promptly to relevant issues and contribute to the formulation of effective foreign policies.
Social implications
First, this study expands the research methodology of parliamentary debates analysis in previous studies. To the best of our knowledge, we are the first to study the UK-China relationship through the MP-word-pair bipartite network. This outcome inspires future researchers to apply various knowledge networks in the LIS field to elucidate deeper characteristics and connotations of UK-China relations. Second, this study provides a novel perspective for UK-China relationship analysis, which deepens the research object from keywords to MPs. This finding may offer important implications for researchers to further study the role of MPs in the UK-China relationship.
Originality/value
This study proposes a novel scheme for analysing the correlation structure between MPs based on bipartite networks. This approach offers insights into the development and evolving dynamics of MPs.
Details
Keywords
Murat Gunduz, Khalid Naji and Omar Maki
This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates…
Abstract
Purpose
This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates a comprehensive set of key factors for successful management of campus facilities. The devised framework aims to cater to the needs of campus facilities management firms and departments for the purpose of gauging and assessing their performance across different management domains. Through this approach, facility management organizations can detect potential areas of enhancement and adopt preemptive steps to evade issues, foster progress and ensure success.
Design/methodology/approach
After a comprehensive analysis of the literature, conducting in-depth interviews with industry experts and employing the Delphi technique in two rounds, a total of 45 indicators critical to CFM success were identified and subsequently sorted into seven distinct groups. Through an online questionnaire, 402 subject-matter experts proficiently assessed the significance of the critical success indicators and their groups. A fuzzy logic framework was developed to evaluate and quantify a firm's compliance with the critical success indicators and groups of indicators. The framework was subsequently weighted using computations of the relative importance index (RII) based on the responses received from the questionnaire participants. The initial section of the framework involved a comprehensive analysis of the firm's performance vis-à-vis the indicators, while the latter part sought to evaluate the impact of the indicators groups on the overall firm's performance.
Findings
The utilization of fuzzy logic has uncovered the significant effects each effective CFM key indicator on indicators groups, as well as the distinct effects of each CFM indicators group on the overall performance of CFM. The results reveal that financial management, communications management, sustainability and environment management and workforce management are the most impactful indicators groups on the CFM performance. This suggests that it is imperative for management to allocate increased attention to these specific areas.
Originality/value
This study contributes to the advancement of current knowledge by revealing vital indicators of effective CFM and utilizing them to construct a thorough fuzzy logic framework that can assist in evaluating the effectiveness of CFM firms worldwide. This has the potential to provide crucial assistance to facility management organizations, facility managers and policymakers in their quest for informed decision-making.
Details
Keywords
Sani Reuben Akoh, Ming Sun, Stephen Ogunlana and Abba Tahir Mahmud
Construction projects, and particularly highway infrastructures, are known to be major contributors to the socio-economic growth of developing countries. However, these types of…
Abstract
Purpose
Construction projects, and particularly highway infrastructures, are known to be major contributors to the socio-economic growth of developing countries. However, these types of projects are infamous for being highly risky due to the interplay of numerous risk factors. This study aims to explore the key risk factors impacting on the performance of highway infrastructure projects in Nigeria from the contextual viewpoint of key industry stakeholders.
Design/methodology/approach
Qualitative data was collected using semi-structured interviews. Specifically, 17 in-depth expert interviews were conducted with experienced stakeholders in the highway sector of the Nigerian construction industry. The collected data was transcribed and analysed using an established coding framework (grounded on case study approach, principles of thematic analysis and saliency analysis).
Findings
Overall, 17 key risks were identified from the data analysis process, and 6 risks were recognised as the most significant, based on the combination of prevalence of occurrence and significance of the coded information. The six top risks were: change in government, corruption, cost of construction materials, inflation, project funding issues and construction project delay. However, the first two of these risks (change in government and corruption) are politically related, which is specific and unique to the setting of Nigeria and thus might be seen as discouraging indicators that could have an impact on attracting foreign investors/contractors to Nigeria.
Originality/value
The study addressed the gap related with identifying context-specific risk factors impeding the performance of highway projects in Nigeria from the viewpoints of industry experts. It is expected that the findings will provide a better insight into the various risk factors and thus aid relevant policymakers to provide context-specific mitigating strategies.
Details