Search results
1 – 2 of 2Betul Gokkaya, Erisa Karafili, Leonardo Aniello and Basel Halak
The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and…
Abstract
Purpose
The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and their limitations. The security of SCs has received increasing attention from researchers, due to the emerging risks associated with their distributed nature. The increase in risk in SCs comes from threats that are inherently similar regardless of the type of SC, thus, requiring similar defence mechanisms. Being able to identify the types of threats will help developers to build effective defences.
Design/methodology/approach
In this work, we provide an analysis of the threats, possible attacks and traceability solutions for SCs, and highlight outstanding problems. Through a comprehensive literature review (2015–2021), we analysed various SC security solutions, focussing on tracking solutions. In particular, we focus on three types of SCs: digital, food and pharmaceutical that are considered prime targets for cyberattacks. We introduce a systematic categorization of threats and discuss emerging solutions for prevention and mitigation.
Findings
Our study shows that the current traceability solutions for SC systems do not offer a broadened security analysis and fail to provide extensive protection against cyberattacks. Furthermore, global SCs face common challenges, as there are still unresolved issues, especially those related to the increasing SC complexity and interconnectivity, where cyberattacks are spread across suppliers.
Originality/value
This is the first time that a systematic categorization of general threats for SC is made based on an existing threat model for hardware SC.
Details
Keywords
Guillermo Monrós, Mario Llusar and José Antonio Badenes
The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an…
Abstract
Purpose
The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an eco-friendly polyfunctional palette that combines (a) high near-infrared reflectance (cool pigments) that allows moderate temperatures in indoor environments and the urban heat island effect; (b) photocatalytic activity for the degradation of organic contaminants of emerging concern of substrates in solution (such as Orange II or methylene blue) and gaseous (NOx and volatile organic compounds such as acetaldehyde or toluene); (c) X-ray radiation attenuators associated with bismuth ions; and (d) biocidal effect combined with co-doping with bactericidal agents.
Design/methodology/approach
Pigments were prepared by a solid-state reaction and characterized by X-ray diffraction, diffuse reflectance spectroscopy, photocatalytic activity over Orange II and scanning electron microscopy.
Findings
The behaviour of the proposed palette was compared to that of a commercial inkjet palette, and an improvement in all functionalities was observed.
Social implications
The functionalities of pigments allow the building envelope and indoor walls to exhibit temperature-moderating effects (with the additional effects of moderating global warming and increasing air conditioning efficiency), purification and disinfection of both indoor and outdoor air, and radiation attenuation.
Originality/value
The proposed palette and its polyfunctional characterization are novel.
Details