Search results

1 – 1 of 1
Article
Publication date: 11 April 2022

Li Hong, Yewei Wang, Zhongchao Qiu, Jianxian Cai, Zhenjing Yao and Zhitao Gao

The purpose of this paper is to solve the problem of weak low-frequency vibration measurement capability of FBG accelerometer, and propose a FBG accelerometer based on cross reed.

Abstract

Purpose

The purpose of this paper is to solve the problem of weak low-frequency vibration measurement capability of FBG accelerometer, and propose a FBG accelerometer based on cross reed.

Design/methodology/approach

This study proposed a new type FBG acceleration sensor based on cross reeds. When the sensor vibrates, the mass block in the new structure rotates around the center of the cross reeds, which could eliminate the impact of friction, reduce the natural frequency of the sensor and improve its sensitivity. This study theoretically analyzed the impact of several structural parameters on the sensitivity and natural frequency of the proposed sensor and used COMSOL to perform static stress analysis and modal simulation; in this study, a test system was built to test the performance of the proposed sensor.

Findings

The test results revealed that the proposed sensor had a natural frequency of 94 Hz; within a low-frequency range of 1–65 Hz, its sensitivity response was flat, the dynamic range was 81.89 dB, the sensitivity was 243.59 pm/g and the linearity was 99.97%. The cross reeds effectively strengthened the structural stability, the relative standard deviation of the repeatability of the sensor was 0.89% and the transverse crosstalk in the working frequency band was −26.97 dB.

Originality/value

This study innovatively proposes the structure of the two symmetrical cross reeds, which can improve sensitivity by eliminating the influence of friction, and the structure of cross reeds can effectively suppress the influence of lateral crosstalk. The proposed sensor can realize real-time accurate measurement of low-frequency weak vibration signals.

Details

Sensor Review, vol. 42 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1