Search results

1 – 4 of 4
Article
Publication date: 13 June 2016

Xuhong Qiang, Xu Jiang, Frans Bijlaard and Henk Kolstein

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Abstract

Purpose

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Design/methodology/approach

First, experimental tests on high strength steel endplate connections were conducted at fire temperature 550°C and at an ambient temperature for reference.

Findings

The moment-rotation characteristic, rotation capacity and failure mode of high-strength-steel endplate connections in fire and at an ambient temperature were obtained through tests and compared with those of mild-steel endplate connections. Further, the provisions of Eurocode 3 were validated with test results. Moreover, the numerical study was carried out via ABAQUS and verified against the experimental results.

Originality/value

It is found that a thinner high-strength-steel endplate can enhance the connection’s rotation capacity both at an ambient temperature and in fire (which guarantees the safety of an entire structure) and simultaneously achieve almost the same moment resistance with a mild steel endplate connection.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2017

Xuhong Qiang, Nianduo Wu, Xu Jiang, Frans Bijlaard and Henk Kolstein

This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire.

Abstract

Purpose

This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire.

Design/methodology/approach

An experimental and numerical study on seven endplate connections after cooling down from fire temperature of 550°C has been carried out and reported herein. Moreover, the provisions of European design standard for steel structures, Eurocode 3, were validated with test results of high strength steel endplate connections.

Findings

In endplate connections, a proper design using a thinner high strength steel endplate can achieve the same failure mode, similar residual load bearing capacity and comparable or even higher rotation capacity after cooling down from fire. It is found that high strength steel endplate connection can regain more than 90 per cent of its original load bearing capacity after cooling down from fire temperature of 550°C.

Originality/value

The post-fire performance of high strength steel endplate connection has been reported. The accuracy of Eurocode 3 for endplate connections is validated against test results.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 September 2021

Changxu Huang, Xuhong Su, Qingqing Song and Xudong Wang

The purpose of this paper is to study the influence of temperature on the acceleration and simulation of indoor corrosion tests and the corrosion behavior of Q235 carbon steel.

Abstract

Purpose

The purpose of this paper is to study the influence of temperature on the acceleration and simulation of indoor corrosion tests and the corrosion behavior of Q235 carbon steel.

Design/methodology/approach

The indoor corrosion test was carried out by continuous salt spray in a salt spray chamber. Weight loss analysis, X-ray diffraction, cannon 1500 D, scanning electron microscopy and electrochemical techniques are used to analyze the results.

Findings

It was found that thickness loss of Q235 carbon steel increases with higher temperature and it can reach 0.095 mm at 50°C. Compared with the Xisha exposure test, the acceleration rate can achieve 230 times. This phenomenon indicates that decreasing the experimental temperature is beneficial to the anti-corrosion of the Q235 carbon steel. It is fascinating to find that acceleration and simulation increase with temperature simultaneously, which shows that β-FeOOH promotes the corrosion rate and α-FeOOH provides high simulation. Meanwhile, electrochemical impedance spectroscopy indicates that the resistance of the rust layer improves with temperature.

Practical implications

Through the study, the authors found that with the increase of temperature, the acceleration and simulation of indoor corrosion test improved, corrosion products and kinetics are the same as those in outdoor exposure test, and which means that the laboratory can achieve the long-term corrosion degree of outdoor exposure in a short time, and the similarity with outdoor exposure is high. This helps to the study of marine atmospheric corrosion, and indoor accelerated corrosion tests can largely eliminate regional differences by adjusting some environmental factors, and lay a foundation for marine atmospheric corrosion.

Originality/value

The effects of temperature on the acceleration and simulation of indoor corrosion tests are discussed. Through laboratory experiments, the long-term service life of Q235 carbon in the Xisha marine atmosphere can be predicted effectively.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 March 2019

Rafiu King Raji, Xuhong Miao, Shu Zhang, Yutian Li, Ailan Wan and Charles Frimpong

The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a…

Abstract

Purpose

The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a profound theory that conductive yarns will have a variation in resistance if subjected to tension. What is not clear is to which types of conductive yarns are most suited to delivering the right sensitivity. The purpose of this paper is to look at strain sensors knitted with conductive composite and coated yarns which include core spun, blended, coated and commingled yarns. The conductive components are stainless steel and silver coating respectively with polyester as the nonconductive part. Using Stoll CMS 530 flat knitting machine, five samples each were knitted with the mentioned yarn categories using 1×1 rib structure. Sensitivity tests were carried out on the samples. Piezoresistive response of the samples reveals that yarns with heterogeneous external structures showed both an increase and a decrease in resistance, whereas those with homogenous structures responded linearly to stress. Stainless steel based yarns also had higher piezoresistive range compared to the silver-coated ones. However, comparing all the knitted samples, silver-coated yarn (SCY) proved to be more suitable for strain sensor as its response to tension was unidirectional with an appreciable range of change in resistance.

Design/methodology/approach

Conductive composite yarns, namely, core spun yarn (CSY1), core spun yarn (CSY2), silver-coated blended yarn (SCBY), staple fiber blended yarn (SFBY) and commingled yarn (CMY) were sourced based on specifications and used to knit strain sensor samples. Electro-mechanical properties were investigated by stretching on a fabric tensile machine to ascertain their suitability for a textile strain sensor.

Findings

In order to generate usable signal for a strain sensor for a conductive yarn, it must have persistent and consistent conductive links, both externally and internally. In the case of composite yarns such as SFBY, SCBY and CMY where there were no consistent alignment and inter-yarn contact, resistance change fluctuated. Among all six different types of yarns used, SCY presented the most suitable result as its response to tension was unidirectional with an appreciable range of change in resistance.

Originality/value

This is an original research carried out by the authors who studied the electro-mechanical properties of some composite conductive yarns that have not been studied before in textile strain sensor research. Detailed research methods, results and interpretation of the results have thus been presented.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Access

Year

Content type

Article (4)
1 – 4 of 4