Search results

1 – 4 of 4
Article
Publication date: 8 July 2024

Xiuwei Li, XingYang Li, Guokun Zhang, Yu Wang, Qinglei Liu and Qiang Li

The purpose of this paper is to investigate the effects of different surface structures, dimensional parameters and cavitation models on the lubrication characteristics of…

Abstract

Purpose

The purpose of this paper is to investigate the effects of different surface structures, dimensional parameters and cavitation models on the lubrication characteristics of water-lubricated journal bearings.

Design/methodology/approach

In this paper, the coupling iteration method of ANSYS and MATLAB is established to calculate the journal orbits of water-lubricated bearing, and the differences between the journal orbits of the smoothed and the textured water-lubricated bearings are compared and analyzed, and the effects of different bearing materials, L/D ratios and clearance ratios on the lubrication performance of water-lubricated bearings are investigated. The effects of different cavitation models on the static equilibrium position and whirling trajectory of water-lubricated bearings are compared.

Findings

The results show that when the surface texture is distributed in the upper bearing or the bearing elastic modulus decreases, the bearing stability increases. Considering shear cavitation and noncondensing gas, the rotor journal orbits amplitude decreases at high speed with low clearance ratio. A water film test rig for water-lubricated bearings is built to measure the full-circle water film pressure of water-lubricated journal bearings, and the experimental results are compared with the simulation results, which are in good agreement.

Originality/value

The findings provide a theoretical basis for optimizing the structure of water-lubricated bearings.

Details

Industrial Lubrication and Tribology, vol. 77 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 14 June 2024

Wei Liu, Xiyan Han, Xiuwei Cao and Zhifeng Gao

Due to ginger holds a special and indispensable place in Chinese cuisine, understanding consumers’ preferences for organic ginger is of significance, especially given the growing…

Abstract

Purpose

Due to ginger holds a special and indispensable place in Chinese cuisine, understanding consumers’ preferences for organic ginger is of significance, especially given the growing interest in organic food products and sustainable agriculture. This study thus examines Chinese consumers’ preference for fresh ginger and the sources of their preferences heterogeneity for organic ginger consumption.

Design/methodology/approach

The study is using choice experiment (CE) method and mixed logit (MXL) modeling with 1,312 valid samples. The participants are regular consumers who are 18 years old or above and had bought fresh ginger within the past 12 months.

Findings

The results show that consumers prefer organic product certification labeling ginger to conventional ginger, preferred to purchase ginger at wet markets to at supermarkets or online, and preferred either ginger with regional public brand or private brand to unbranded ginger. Results also indicate that age, education level, income, purchasing experience of organic and branded ginger, and cognition of ginger health benefits are the sources of heterogeneity in consumer preferences for organic ginger.

Originality/value

This study contributes to ginger growers, marketers and policy makers. This study tracks how consumers' preferences change under different attribute combinations, capture the complex preference structure of consumers, and help reveal the motivations behind consumers' preferences for organic ginger. These findings will be crucial for developing marketing strategies, promoting organic products, and meeting consumer needs.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 37 no. 1
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 23 October 2023

Xiuwei Shi, Wujian Ding, Chunjie Xu, Fangwei Xie and Zuzhi Tian

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and…

Abstract

Purpose

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and safe operation. Therefore, a numerical investigation on the wear characteristics of the centrifugal slurry pump under different particle conditions was conducted.

Design/methodology/approach

A solid-liquid two-phase model based on CFD-DEM coupling is established and used to analyze the flow field and the wear characteristics of the flow-passing parts with different particle densities, volume fractions and sizes.

Findings

Particle conditions will affect the pump flow field. To analyze the pump wear characteristics, the wear distribution, wear value and cumulative force laws of flow-passing parts under different particle conditions are obtained. In each flow-passing part, with the increase of particle density, volume fraction and size, the wear area is concentrated and the wear depth increases. Under different particle conditions, the wear is mainly on the volute chamber and the blade pressure surface, and the tangential cumulative force of flow-passing parts is much larger than the normal cumulative force.

Originality/value

An accurate model and a coupled simulation method for predicting the wear of the slurry pump are obtained, and the wear characteristic law can provide a reference for the design of the slurry pump to reduce friction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 July 2024

Meng Min, Jiang Xian, Gao Tenglong and Ping Yufei

Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending…

Abstract

Purpose

Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending moment and the shear force on the strain gauge, the accuracy of torque measurement is usually low. Therefore, aircraft torque measurement is difficult. Based on the characteristics of a certain type of horizontal tail, a measurement method for the torque with high accuracy was proposed in this paper.

Design/methodology/approach

A new simplified torque measurement method for the all-moving horizontal tail was proposed based on the spiral driver. The feasibility of the method and key points of the tests were analyzed and studied through a virtual load calibration test.

Findings

Based on the results of the real load calibration test, the torque load equation with high accuracy was established, and the torque measurement was achieved in load flight tests.

Research limitations/implications

However, the proposed method is based on the structure of the spiral driver. If there is generally no spiral driver at the aircraft wings and vertical tails, then the appropriate torque measurement method needs to be derived according to the specific object.

Originality/value

The research in this paper provides a new idea for the torque measurement of aircraft structures, which can be used for the torque measurement of subsequent aircraft types.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 4 of 4