Search results

1 – 10 of 25
Article
Publication date: 30 August 2019

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Abstract

Purpose

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Design/methodology/approach

Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives.

Findings

Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments.

Research limitations/implications

The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments.

Originality/value

The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.

Article
Publication date: 14 June 2019

Slawomir Koziel and Anna Pietrenko-Dabrowska

A framework for reliable modeling of high-frequency structures by nested kriging with an improved sampling procedure is developed and extensively validated. A comprehensive…

132

Abstract

Purpose

A framework for reliable modeling of high-frequency structures by nested kriging with an improved sampling procedure is developed and extensively validated. A comprehensive benchmarking including conventional kriging and previously reported design of experiments technique is provided. The proposed technique is also demonstrated in solving parameter optimization task.

Design/methodology/approach

The keystone of the proposed approach is to focus the modeling process on a small region of the parameter space (constrained domain containing high-quality designs with respect to the selected performance figures) instead of adopting traditional, hyper-cube-like domain defined by the lower and upper parameter bounds. A specific geometry of the domain is explored to improve a uniformity of the training data set. In consequence, the predictive power of the model is improved.

Findings

Building the model in a constrained domain allows for a considerable reduction of a training data set size without a necessity to either narrow down the parameter ranges or to reduce the parameter space dimensionality. Improving uniformity of training data set allocation permits further reduction of the computational cost of setting up the model. The proposed technique can be used to expedite the parameter optimization and enables locating good initial designs in a straightforward manner.

Research limitations/implications

The developed framework opens new possibilities inaccurate surrogate modeling of high-frequency structures described by a large number of geometry and/or material parameters. Further extensions can be investigated such as the inclusion of the sensitivity data into the model or exploration of the particular geometry of the model domain to further reduce the computational overhead of training data acquisition.

Originality/value

The efficiency of the proposed method has been demonstrated for modeling and parameter optimization of high-frequency structures. It has also been shown to outperform conventional kriging and previous constrained modeling approaches. To the authors’ knowledge, this approach to formulate and handle the modeling process is novel and permits the establishment of accurate surrogates in highly dimensional spaces and covering wide ranges of parameters.

Open Access
Article
Publication date: 16 March 2020

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

4331

Abstract

Purpose

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

Design/methodology/approach

The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities. The considered method is suitable for handling computationally expensive models, which are evaluated using full-wave electromagnetic (EM) simulations. Numerical case studies are provided demonstrating the feasibility of the framework for the design of real-world structures.

Findings

The use of pre-existing designs enables rapid identification of a good starting point for antenna optimization and speeds-up estimation of the structure response sensitivities. The base designs can be arranged into subsets (simplexes) in the objective space and used to represent the target vector, i.e. the starting point for structure design. The base closest base point w.r.t. the initial design can be used to initialize Jacobian for local optimization. Moreover, local optimization costs can be reduced through the use of Broyden formula for Jacobian updates in consecutive iterations.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the acceleration of antenna optimization. The proposed technique enables the identification of a good starting point and reduces the number of expensive EM simulations required to obtain the final design.

Originality/value

The proposed design framework proved to be useful for the identification of good initial design and rapid optimization of modern antennas. Identification of the starting point for the design of such structures is extremely challenging when using conventional methods involving parametric studies or repetitive local optimizations. The presented methodology proved to be a useful design and geometry scaling tool when previously obtained designs are available for the same antenna structure.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Slawomir Koziel and Adrian Bekasiewicz

This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching…

Abstract

Purpose

This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering the design cost and improve reliability.

Design/methodology/approach

There are two algorithmic frameworks presented, both fully deterministic. The first algorithm involves creating a path covering the Pareto front and arranged as a sequence of patches relocated in the course of optimization. Response correction techniques are used to find the Pareto front representation at the high-fidelity EM simulation level. The second algorithm exploits Pareto front exploration where subsequent Pareto-optimal designs are obtained by moving along the front by means of solving appropriately defined local constrained optimization problems. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving expensive EM-simulation models of impedance transformer structures.

Findings

It is possible, by means of combining surrogate modeling techniques and constrained local optimization, to identify the set of alternative designs representing Pareto-optimal solutions, in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Multi-objective optimization for the considered class of structures can be realized using deterministic approaches without defaulting to evolutionary methods.

Research limitations/implications

The present study can be considered a step toward further studies on expedited optimization of computationally expensive simulation models for miniaturized microwave components.

Originality/value

The proposed algorithmic solutions proved useful for expedited multi-objective design optimization of miniaturized microwave structures. The problem is extremely challenging when using conventional methods, in particular evolutionary algorithms. To the authors’ knowledge, this is one of the first attempts to investigate deterministic surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.

Article
Publication date: 20 December 2019

Anna Pietrenko-Dabrowska and Slawomir Koziel

The purpose of this study is to propose a framework for expedited antenna optimization with numerical derivatives involving gradient variation monitoring throughout the…

Abstract

Purpose

The purpose of this study is to propose a framework for expedited antenna optimization with numerical derivatives involving gradient variation monitoring throughout the optimization run and demonstrate it using a benchmark set of real-world wideband antennas. A comprehensive analysis of the algorithm performance involving multiple starting points is provided. The optimization results are compared with a conventional trust-region (TR) procedure, as well as the state-of-the-art accelerated TR algorithms.

Design/methodology/approach

The proposed algorithm is a modification of the TR gradient-based algorithm with numerical derivatives in which a monitoring of changes of the system response gradients is performed throughout the algorithm run. The gradient variations between consecutive iterations are quantified by an appropriately developed metric. Upon detecting stable patterns for particular parameter sensitivities, the costly finite differentiation (FD)-based gradient updates are suppressed; hence, the overall number of full-wave electromagnetic (EM) simulations is significantly reduced. This leads to considerable computational savings without compromising the design quality.

Findings

Monitoring of the antenna response sensitivity variations during the optimization process enables to detect the parameters for which updating the gradient information is not necessary at every iteration. When incorporated into the TR gradient-search procedures, the approach permits reduction of the computational cost of the optimization process. The proposed technique is dedicated to expedite direct optimization of antenna structures, but it can also be applied to speed up surrogate-assisted tasks, especially solving sub-problems that involve performing numerous evaluations of coarse-discretization models.

Research limitations/implications

The introduced methodology opens up new possibilities for future developments of accelerated antenna optimization procedures. In particular, the presented routine can be combined with the previously reported techniques that involve replacing FD with the Broyden formula for directions that are satisfactorily well aligned with the most recent design relocation and/or performing FD in a sparse manner based on relative design relocation (with respect to the current search region) in consecutive algorithm iterations.

Originality/value

Benchmarking against a conventional TR procedure, as well as previously reported methods, confirms improved efficiency and reliability of the proposed approach. The applications of the framework include direct EM-driven design closure, along with surrogate-based optimization within variable-fidelity surrogate-assisted procedures. To the best of the authors’ knowledge, no comparable approach to antenna optimization has been reported elsewhere. Particularly, it surmounts established methodology by carrying out constant supervision of the antenna response gradient throughout successive algorithm iterations and using gathered observations to properly guide the optimization routine.

Article
Publication date: 30 September 2019

Slawomir Koziel and Anna Pietrenko-Dabrowska

A technique for accelerated design optimization of antenna input characteristics is developed and comprehensively validated using real-world wideband antenna structures…

Abstract

Purpose

A technique for accelerated design optimization of antenna input characteristics is developed and comprehensively validated using real-world wideband antenna structures. Comparative study using a conventional trust-region algorithm is provided. Investigations of the effects of the algorithm control parameters are also carried out.

Design/methodology/approach

An optimization methodology is introduced that replaces finite differentiation (FD) by a combination of FD and selectively used Broyden updating formula for antenna response Jacobian estimations. The updating formula is used for directions that are sufficiently well aligned with the design relocation that occurred in the most recent algorithm iteration. This allows for a significant reduction of the number of full-wave electromagnetic simulations necessary for the algorithm to converge; hence, it leads to the reduction of the overall design cost.

Findings

Incorporation of the updating formulas into the Jacobian estimation process in a selective manner considerably reduces the computational cost of the optimization process without compromising the design quality. The algorithm proposed in the study can be used to speed up direct optimization of the antenna structures as well as surrogate-assisted procedures involving variable-fidelity models.

Research limitations/implications

This study sets a direction for further studies on accelerating procedures for the local optimization of antenna structures. Further investigations on the effects of the control parameters on the algorithm performance are necessary along with the development of means to automate the algorithm setup for a particular antenna structure, especially from the point of view of the search space dimensionality.

Originality/value

The proposed algorithm proved useful for a reduced-cost optimization of antennas and has been demonstrated to outperform conventional algorithms. To the authors’ knowledge, this is one of the first attempts to address the problem in this manner. In particular, it goes beyond traditional approaches, especially by combining various sensitivity estimation update measures in an adaptive fashion.

Open Access
Article
Publication date: 10 January 2020

Slawomir Koziel and Anna Pietrenko-Dabrowska

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is…

Abstract

Purpose

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.

Design/methodology/approach

The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.

Findings

The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate.

Research limitations/implications

The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition.

Originality/value

The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Slawomir Koziel and Adrian Bekasiewicz

This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of…

Abstract

Purpose

This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures.

Design/methodology/approach

A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal designs (obtained by means of separate single-objective optimization runs). Its performance (both cost- and quality-wise) depends on the dimensions of the so-called patch, an elementary region being relocated in the course of the optimization process. The cost/performance trade-offs are studied using two examples of ultra-wideband antenna structures and the optimization results are compared to draw conclusions concerning the algorithm robustness and determine the most advantageous control parameter setups.

Findings

The obtained results indicate that the investigated algorithm is very robust, i.e. its performance is weakly dependent on the control parameters setup. At the same time, it is found that the most suitable setups are those that ensure low computational cost, specifically non-uniform ones generated on the basis of sensitivity analysis.

Research limitations/implications

The study provides recommendations for control parameter setup of deterministic multi-objective optimization procedure for computationally efficient design of antenna structures. This is the first study of this kind for this particular design procedure, which confirms its robustness and determines the most suitable arrangement of the control parameters. Consequently, the presented results permit full automation of the surrogate-assisted multi-objective antenna optimization process while ensuring its lowest possible computational cost.

Originality/value

The work is the first comprehensive validation of the sequential domain patching algorithm under various scenarios of its control parameter setup. The considered design procedure along with the recommended parameter arrangement is a robust and computationally efficient tool for fully automated multi-objective optimization of expensive simulation models of contemporary antenna structures.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 October 2018

Andrew Thelen, Leifur Leifsson, Anupam Sharma and Slawomir Koziel

Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are…

Abstract

Purpose

Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model evaluations, the purpose of this paper is to identify computationally efficient design approaches.

Design/methodology/approach

Several algorithms are compared for the design optimization of DRWTs. The algorithms vary widely in approaches and include a direct derivative-free method, as well as three surrogate-based optimization methods, two approximation-based approaches and one variable-fidelity approach with coarse discretization low-fidelity models.

Findings

The proposed variable-fidelity method required significantly lower computational cost than the derivative-free and approximation-based methods. Large computational savings come from using the time-consuming high-fidelity simulations sparingly and performing the majority of the design space search using the fast variable-fidelity models.

Originality/value

Due the complex simulations and the large number of designable parameters, the design of DRWTs require the use of numerical optimization algorithms. This work presents a novel and efficient design optimization framework for DRWTs using computationally intensive simulations and variable-fidelity optimization techniques.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 July 2019

Slawomir Koziel and Adrian Bekasiewicz

This paper aims to investigate the strategy for low-cost yield optimization of miniaturized microstrip couplers using variable-fidelity electromagnetic (EM) simulations.

Abstract

Purpose

This paper aims to investigate the strategy for low-cost yield optimization of miniaturized microstrip couplers using variable-fidelity electromagnetic (EM) simulations.

Design/methodology/approach

Usefulness of data-driven models constructed from structure frequency responses formulated in the form of suitably defined characteristic points for statistical analysis is investigated. Reformulation of the characteristics leads to a less nonlinear functional landscape and reduces the number of training samples required for accurate modeling. Further reduction of the cost associated with construction of the data-driven model, is achieved using variable-fidelity methods. Numerical case study is provided demonstrating feasibility of the feature-based modeling for low cost statistical analysis and yield optimization.

Findings

It is possible, through reformulation of the structure frequency responses in the form of suitably defined feature points, to reduce the number of training samples required for its data-driven modeling. The approximation model can be used as an accurate evaluation engine for a low-cost Monte Carlo analysis. Yield optimization can be realized through minimization of yield within the data-driven model bounds and subsequent model re-set around the optimized design.

Research limitations/implications

The investigated technique exceeds capabilities of conventional Monte Carlo-based approaches for statistical analysis in terms of computational cost without compromising its accuracy with respect to the conventional EM-based Monte Carlo.

Originality/value

The proposed tolerance-aware design approach proved useful for rapid yield optimization of compact microstrip couplers represented using EM-simulation models, which is extremely challenging when using conventional approaches due to tremendous number of EM evaluations required for statistical analysis.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Content type

Article (25)
1 – 10 of 25