Search results

1 – 10 of 46
Open Access
Article
Publication date: 14 May 2024

Rui Jia, Zhimin Shuai, Tong Guo, Qian Lu, Xuesong He and Chunlin Hua

This study aims to analyze the influence of farmers’ degree of participation in collective action on their adoption decisions and waiting time regarding soil and water…

Abstract

Purpose

This study aims to analyze the influence of farmers’ degree of participation in collective action on their adoption decisions and waiting time regarding soil and water conservation (SWC) measures.

Design/methodology/approach

The Probit model and Generalized Propensity Score Match method are used to assess the effect of the degree of participation in collective action on farmers’ adoption decisions and waiting time for implementing SWC measures.

Findings

The findings reveal that farmers’ engagement in collective action positively influences the decision-making process regarding terrace construction, water-saving irrigation and afforestation measures. However, it does not significantly impact the decision-making process for plastic film and ridge-furrow tillage practices. Notably, collective action has the strongest influence on farmers’ adoption decisions regarding water-saving irrigation technology, with a relatively smaller influence on the adoption of afforestation and terrace measures. Moreover, the results suggest that participating in collective action effectively reduces the waiting time for terrace construction and expedites the adoption of afforestation and water-saving irrigation technology. Specifically, collective action has a significantly negative effect on the waiting time for terrace construction, followed by water-saving irrigation technology and afforestation measures.

Practical implications

The results of this study underscore the significance of fostering mutual assistance and cooperation mechanisms among farmers, as they can pave the way for raising funds and labor, cultivating elite farmers, attracting skilled labor to rural areas, enhancing the adoption rate and expediting the implementation of terraces, water-saving irrigation technology and afforestation measures.

Originality/value

Drawing on an evaluation of farmers’ degree of participation in collective action, this paper investigates the effect of participation on their SWC adoption decisions and waiting times, thereby offering theoretical and practical insights into soil erosion control in the Loess Plateau.

Details

International Journal of Climate Change Strategies and Management, vol. 16 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 29 July 2014

Fazhan Geng, Suping Qian and Shuai Li

– The purpose of this paper is to find an effective numerical method for solving singularly perturbed convection-diffusion problems.

Abstract

Purpose

The purpose of this paper is to find an effective numerical method for solving singularly perturbed convection-diffusion problems.

Design/methodology/approach

The present method is based on the asymptotic expansion method and the variational iteration method (VIM). First a zeroth order asymptotic expansion for the solution of the given singularly perturbed convection-diffusion problem is constructed. Then the reduced terminal value problem is solved by using the VIM.

Findings

Two numerical examples are introduced to show the validity of the present method. Obtained numerical results show that the present method can provide very accurate analytical approximate solutions not only in the boundary layer, but also away from the layer.

Originality/value

The combination of the asymptotic expansion method and the VIM is applied to singularly perturbed convection-diffusion problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 August 2021

Hamish D. Anderson, Jing Liao and Shuai Yue

Employing the anti-corruption campaign as an exogenous political shock, this paper examines how political intervention shapes the impact of financial expert CEOs on firm…

Abstract

Purpose

Employing the anti-corruption campaign as an exogenous political shock, this paper examines how political intervention shapes the impact of financial expert CEOs on firm investment decisions.

Design/methodology/approach

This paper uses a sample of 2,808 Chinese firms listed in the Shanghai and Shenzhen Stock Exchanges from 2003 to 2016. Panel data is used for conducting the analysis controlling for firm, industry, and year fixed effects.

Findings

The authors found that CEOs with financial expertise are sensitive to political intervention when making investment decisions. First, financial expert CEOs spend more on R&D expenditure in private-owned companies and they are associated with less R&D expenditure in state-owned enterprises (SOEs). Second, financial expert CEOs are associated with higher investment expenditure in general, but they become less likely to invest more in the post-anti-corruption period. The reduction in investment expenditure due to the anti-corruption campaign is more pronounced in SOEs than in private-owned companies. Third, the anti-corruption campaign promotes R&D investment in general, but in SOEs, expert CEOs tend to be less likely to invest more on R&D after the anti-corruption shock.

Originality/value

This paper enriches the growing literature on the impact of political intervention and the role of the anti-corruption campaign on corporate behaviour.

Details

International Journal of Managerial Finance, vol. 18 no. 3
Type: Research Article
ISSN: 1743-9132

Keywords

Article
Publication date: 2 November 2015

Zheng Bo, Qi Zhao, Xiaorui Shuai, Jianhua Yan and Kefa Cen

– The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Abstract

Purpose

The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Design/methodology/approach

The wall roughness is generated by the method of random midpoint displacement (RMD) and the lattice Boltzmann BGK model is applied. The influences of Reynolds number, relative roughness and the Hurst exponent of roughness profile on the Poiseuille number are investigated.

Findings

Unlike the smooth channel flow, Reynolds number, relative roughness and the Hurst exponent of roughness profiles play critical roles on the Poiseuille number Po in rough microchannels. Modeling results indicate that, in rough microchannels, the rough surface configuration intensifies the flow-surface interactions and the wall conditions turn to dominate the flow characteristics. The perturbance of the local flows near the channel wall and the formation of recirculation regions are two main features of the flow-surface interactions.

Research limitations/implications

The fluid flow in parallel planes with surface roughness is considered in the current study. In other words, only two-dimensional fluid flow is investigated.

Practical implications

The LBM is a very useful tool to investigate the microscale flows.

Originality/value

A new method (RMD) is applied to generate the wall roughness in parallel plane and LBM is conducted to investigate the pressure drop characteristics in rough microchannels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2023

Haodong Fan, Feng Luo, Shuai Gao, Meng Li, Zhen Lv and Geng Sun

This study aims to clarify the evolution law of stress field and fracture field during the mining process of inclined coal seam, to prevent the occurrence of roof burst water and…

Abstract

Purpose

This study aims to clarify the evolution law of stress field and fracture field during the mining process of inclined coal seam, to prevent the occurrence of roof burst water and impact ground pressure accident during the advancing process of working face.

Design/methodology/approach

The evolution law of stress-fracture field under different mining conditions of inclined coal seam was studied by using discrete element method and similar material simulation method.

Findings

The overburden stress at the lower end of the coal seam was mainly transmitted to the deep rock mass on the left side, and the overburden stress at the upper end was mainly transmitted to the floor direction. With the increase of the inclined length of the mining coal seam, the development of the fracture zone gradually evolves from the “irregular arch” form to the “transversely developed trapezoid” form. The development range of the fracture zone was always in the internal area of the stress concentration shell.

Originality/value

An original element of this paper is based on the condition that the dip angle of coal seam is 35°, and the evolution law of overburden stress-fracture field during the excavation of coal seam with different lengths was analyzed by UDEC numerical simulation software. The coupling relationship between stress shell and fracture field was proposed, and the development range of fracture zone was determined by stress. The value of this paper is to provide technical support and practical basis for the safety production of a mine working face.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 July 2017

Hongbo Qiu, Wenfei Yu, Shuai Yuan, Bingxia Tang and Cunxiang Yang

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study…

Abstract

Purpose

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study on the electromagnetic field of permanent magnet synchronous motors (PMSM). The purpose of this study is to explore the necessary of the LC existing in the fault analysis and the electromagnetic characteristics of the PMSM with the ITSC fault when taking into account the LC.

Design/methodology/approach

Based on the finite element method (FEM), the fault model was established, and the magnetic density of the fault condition was analyzed. The induced electromotive force (EMF) and the LC of the short circuit ring were studied. The three-phase induced EMF and the unbalance of the three-phase current under the fault condition were studied. Finally, a prototype test platform was built to obtain the data of the fault.

Findings

The influence of the fault on the magnetic density was obtained. The current phase lag when the ITSC fault occurs causes the magnetic enhancement of the armature reaction. The mechanism that LC hinders the flux change was revealed. The influence of the fault on the three-phase-induced EMF symmetry, the three-phase current balance and the loss was obtained.

Originality/value

The value of the LC in the short circuit ring and the influence of it on the motor electromagnetic field were obtained. On the basis of the electromagnetic field calculation model, the sensitivity of the LC to the magnetic density, induced EMF, current and loss were analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 January 2017

Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei and Yusheng Shi

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines…

1149

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods.

Design/methodology/approach

The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds.

Findings

The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment.

Originality/value

A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2024

Xiaoxiao Qiu, Shuaitong Liang, Shujia Wang, Shen Qian, Hongjuan Zhang, Xue Mei Ding and Jiping Wang

This paper explores what factors influence household textile washing behaviour and how these factors relate to greenhouse gas emissions during the textile use stage.

54

Abstract

Purpose

This paper explores what factors influence household textile washing behaviour and how these factors relate to greenhouse gas emissions during the textile use stage.

Design/methodology/approach

A questionnaire survey related to textile summer washing and care behavior was conducted among households in 16 administrative districts of Shanghai. This study used the modified Consumer Lifestyle Approach framework of the washing and care ecosystem. The research hypotheses were established by selecting related factors from four aspects: household demographic characteristics, economy and consumption characteristics, washing machines and detergents characteristics.

Findings

First, we have demonstrated how some course factors do not significantly affect greenhouse emissions. None of the demographics, detergent-related activities, economy and consumption constructs significantly affect greenhouse emissions. Second, we have identified that washing machine and related activities has a direct positive effect on GHG emissions. The washing machine is not only the de facto carrier of all washing activities but also the core of washing activities. Washing machine is crucial in reducing greenhouse emissions and adjusting consumer behaviors.

Originality/value

This paper conducts a study related to the washing and care behavior of households in Shanghai. The paper examines the factors influencing household washing behavior and the relationship between these factors and greenhouse gas emissions during the textile use phase.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 16 January 2024

Pengyue Guo, Tianyun Shi, Zhen Ma and Jing Wang

The paper aims to solve the problem of personnel intrusion identification within the limits of high-speed railways. It adopts the fusion method of millimeter wave radar and camera…

Abstract

Purpose

The paper aims to solve the problem of personnel intrusion identification within the limits of high-speed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy of object recognition in dark and harsh weather conditions.

Design/methodology/approach

This paper adopts the fusion strategy of radar and camera linkage to achieve focus amplification of long-distance targets and solves the problem of low illumination by laser light filling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm for multi-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposes a linkage and tracking fusion strategy to output the correct alarm results.

Findings

Simulated intrusion tests show that the proposed method can effectively detect human intrusion within 0–200 m during the day and night in sunny weather and can achieve more than 80% recognition accuracy for extreme severe weather conditions.

Originality/value

(1) The authors propose a personnel intrusion monitoring scheme based on the fusion of millimeter wave radar and camera, achieving all-weather intrusion monitoring; (2) The authors propose a new multi-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring under adverse weather conditions; (3) The authors have conducted a large number of innovative simulation experiments to verify the effectiveness of the method proposed in this article.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 20 December 2024

Zijun Lin, Chaoqun Ma, Olaf Weber and Yi-Shuai Ren

The purpose of this study is to map the intellectual structure of sustainable finance and accounting (SFA) literature by identifying the influential aspects, main research streams…

Abstract

Purpose

The purpose of this study is to map the intellectual structure of sustainable finance and accounting (SFA) literature by identifying the influential aspects, main research streams and future research directions in SFA.

Design/methodology/approach

The results are obtained using bibliometric citation analysis and content analysis to conduct a bibliometric review of the intersection of sustainable finance and sustainable accounting using a sample of 795 articles published between 1991 and November 2023.

Findings

The most influential factors in the SFA literature are identified, highlighting three primary areas of research: corporate social responsibility and environmental disclosure; financial and economic performance; and regulations and standards.

Practical implications

SFA has experienced rapid development in recent years. The results identify the current research domain, guide potential future research directions, serve as a reference for SFA and provide inspiration to policymakers.

Social implications

SFA typically encompasses sustainable corporate business practices and investments. This study contributes to broader social impacts by promoting improved corporate practices and sustainability.

Originality/value

This study expands on previous research on SFA. The authors identify significant aspects of the SFA literature, such as the most studied nations, leading journals, authors and trending publications. In addition, the authors provide an overview of the three major streams of the SFA literature and propose various potential future research directions, inspiring both academic research and policymaking.

Details

Sustainability Accounting, Management and Policy Journal, vol. 16 no. 2
Type: Research Article
ISSN: 2040-8021

Keywords

1 – 10 of 46