Search results
1 – 2 of 2Reetu Yadav, Mamta Kushwah, Anna Nikolaevna Berlina and Mulayam Singh Gaur
The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.
Abstract
Purpose
The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.
Design/methodology/approach
The maximum response of modified electrode was obtained with, 50 mV pulse amplitude, 20 mV/s scan rate in phosphate buffer of pH 4.0. Ag-Au BMNPs, as the mediators improved electron transmit during the entire electron transfer process and the aptasensor response. Herein, the authors used aptamer as the capture probe to prepare an aptasensor with enhanced stability.
Findings
The proposed aptasensor exhibited a wide linearity to cadmium in the range of 0.001–0.100 µg/L with a low detection limit of 0.005×10−3 µg/L. The glassy carbon electrodes with Ag-Au BMNPs showed a lower detection limit.
Originality/value
This aptasensor has good reproducibility, stability and repeatability and is cost-effective to regenerate. The specificity and selectivity of the novel modified electrode is tested in the presence of other interfering metal ions such as Fe2+, Mn2+, Mg2+, Sb3+ and Bi3+. The aptasensor shows 10 times more sensitivity and selectivity for Cd2+ ions.
Details
Keywords
Surender Kumar, Sanjay Yadav, Reetu Rani and Ashok Kumar Pathera
This paper aims to study the effects of plum powder and apple pomace powder additions on the quality properties of buffalo meat emulsion.
Abstract
Purpose
This paper aims to study the effects of plum powder and apple pomace powder additions on the quality properties of buffalo meat emulsion.
Design/methodology/approach
Buffalo meat emulsions were prepared using different levels (2%, 4% and 6%) of plum powder and apple pomace powder, respectively. The meat emulsions were analysed for the physico-chemical, sensory and textural properties of the meat emulsion.
Findings
The pH of meat emulsions decreased significantly (p < 0.05) with an increased level of plum powder and apple pomace powder. Water-holding capacity (43.1%–48.1%), emulsion stability (80.2%–92.2%) and cooking yield (85.4%–91.0%) were significantly (p < 0.05) higher in plum powder and apple pomace powder added than the water-holding capacity (42.1%), emulsion stability (79.7%) and cooking yield (85.0%) of control emulsion. The moisture content was decreased significantly (p < 0.05), and crude fibre content was increased significantly (p < 0.05) with the increase in plum powder and apple pomace powder additions in meat emulsions. The total phenolic content and colour values (a* and b*) were significantly higher in plum powder and apple pomace powder added to meat emulsions. The sensory scores of meat emulsions were affected by the addition of plum powder and apple pomace powder. The meat emulsion added with 6% plum powder and 6% apple pomace powder showed significantly lower values of sensory overall acceptability. The hardness of meat emulsions increased with the addition of plum powder and apple pomace powder.
Originality/value
The results indicated that meat emulsions with a good cooking yield, fibre content, sensory acceptability and textural properties can be prepared by using plum powder and apple pomace powder.
Details