Search results

1 – 2 of 2
Article
Publication date: 28 August 2024

Nacira Mecheri, Leila Lefrada, Messaoud Benounis, Chedia Ben Hassine, Houcine Berhoumi and Chama Mabrouk

Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent…

Abstract

Purpose

Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent years, there has been increasing interest in the development of nonenzymatic sensors due to their simplicity, efficiency and excellent selectivity. The aim of this study is to present a selective and sensitive method for the detection of ascorbic acid in aqueous system using a new electrochemical non-enzymatic sensor based on a gold nanoparticles Au-NPs-1,3-di(4-bromophényl)-5-tert-butyl-1,3,5-triazinane (DBTTA) composite.

Design/methodology/approach

Using the square wave voltammetry (SWV) technique, a series of Au-NPs-DBTTA composites were successfully developed and investigated. First, DBTTA was synthesized via the condensation of tert-butylamine and a4-bromoaniline. The structure obtained was identified by IR, 1H NMR and 13C NMR analysis. A glassy carbon electrode (GCE) was modified with 10–1 M DBTTA dissolved in an aqueous solution by cyclic voltammetry in the potential range of 1–1.4 V. Au-NPs were then deposited on the DBTTA/GCE by a chronoamperometric technique. SWV was used to study the electrochemical behavior of the modified electrode (DBTTA/Au-NPs/GCEs). To observe the effect of nanoparticles, ascorbic acid in a buffer solution was analyzed by SWV at the modified electrode with and without gold nanoparticles (Au-NPs).

Findings

The DBTTA/Au-NPs/GCE showed better electroanalytical results. The detection limit of 10–5 M was obtained and the electrode was proportional to the logarithm of the AA concentration in the range of 5 × 10−3 M to 1 × 10−1 with very good correlation parameters.

Originality/value

It was also found that the elaborated sensor exhibited reproducibility and excellent selectivity against interfering molecules such as uric acid, aspartic acid and glucose. The proposed sensor was tested for the recognition of AA in orange, and satisfactory results were obtained.

Details

Sensor Review, vol. 44 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 November 2017

Nacira Mecheri, Messaoud Benounis and Houcine Barhoumi

This work aims to determine iron (III) in real water by using a new amperometric sensor on the basis of polyethylene glycol (PEG) to test and characterize a new modified selective…

Abstract

Purpose

This work aims to determine iron (III) in real water by using a new amperometric sensor on the basis of polyethylene glycol (PEG) to test and characterize a new modified selective platinum electrode.

Design/methodology/approach

In this review, the authors focus on testing and characterizing several polymeric membranes by using cyclic voltammetry and square-wave voltammetry (SWV) methods to differentiate the nature of plasticizers (2-Nitrophenyl octyl ether [NPOE], Di-n-octyl phthalate, Bis (2-ethylhexyl) sebacate, PEG. The authors have evaluated the possibility of using crown ether and three zeolite ionophore (faujasite [FAU], Chabazite and ZSM-5) matrixes as novel materials for the selective determination of iron (III) using SWV for the best membranes.

Findings

The results demonstrated that the modified platinum electrode presents linear dependence of amperometric signal with a wide linear range of 10−9 to 10−4 mol.L−1 for iron determination, revealing a detection limit of 10−10 mol.L−1 and amperometric sensibility of 58.58 µA/mol.L−1. The slope of the membrane plasticized with PEG calibration curve is six times higher than that of the other membranes. It was noticed that when the crown ether and the three zeolite ionophores were used, as a new detective material for iron with the membrane plasticized with PEG, the expected results were highly proven. The modified platinum electrode showed high selectivity to iron (III) when the heavy metal ions such as Ni (II), Al (III), Zn (III), Cd (II), Gd (II) and Cu (II) were present.

Originality/value

The utility of the method and the efficiency of the best membrane sensor have been accurately tested by the determination of iron in real water samples of Hassi Messaoud, south of Algeria.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 2 of 2