Search results

1 – 10 of over 5000
Article
Publication date: 19 September 2019

Siyang Gao, Jianwei Sun and Bangcheng Zhang

The purpose of this paper is to design a kind of air bearing which is based on bionics. Compare with ordinary air bearing, the air pressure consumption is reduced and energy is…

Abstract

Purpose

The purpose of this paper is to design a kind of air bearing which is based on bionics. Compare with ordinary air bearing, the air pressure consumption is reduced and energy is saved.

Design/methodology/approach

This paper puts forward a proposition that a bionic bearing structure is designed based on the bionics principle. First, the authors analyze the microstructure of the wings of long-eared owls and the structural mapping model is established. Second, the theoretical formula is derived through the model, and the structural parameters are optimized by sequence quadratic program (SQP). Lastly, the experimental model is made by 3D printing technology, and the experimental data are analyzed to verify the feasibility of the theory.

Findings

By comparing the experimental data, it can be seen that the air pressure of the original air bearing is reduced by 27 per cent, and the validity of the theory and design method is verified.

Originality/value

In this paper, a design method of air bearing based on bionic principle is presented, which can save the air pressure required for working of air bearing, and the structure of air bearing is expected to be applied in engineering.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2020

Siyang Gao, Bangcheng Zhang, Jianwei Sun and Wenrui Liu

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Abstract

Purpose

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Design/methodology/approach

This paper presents a surface structure of a suspended glass transport device based on the principle of bionics. First, a mapping model is constructed based on the wing structure. Second, the optimal structural parameters are given according to genetic algorithm optimization. Finally, the experimental comparison of the test bench verified the feasibility of the theory.

Findings

Through experimental comparison, the biomimetic suspension glass transport device saves 20% of air pressure compared with the ordinary suspended glass transport device, which verifies the effectiveness of the theoretical method.

Originality/value

This paper proposes a suspended glass transport device based on the principle of bionics, which saves the air pressure required for work. It is expected to be used in suspension glass transport devices.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0389/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 June 2019

Yingchun Zhang, Nesrin Ozalp and Gongnan Xie

The purpose of this paper is to investigate the unsteady flow past through a permeable diamond-shaped cylinder and to study the effects of the aspect ratios and Darcy numbers of…

207

Abstract

Purpose

The purpose of this paper is to investigate the unsteady flow past through a permeable diamond-shaped cylinder and to study the effects of the aspect ratios and Darcy numbers of the cylinder.

Design/methodology/approach

The lattice Boltzmann method with D2Q9 lattice model was used to simulate the unsteady flow through permeable diamond-shaped cylinders. The present numerical method is validated against the available data.

Findings

The key findings are that increasing the permeability enhances the suppression of vortex shedding, and that the Strouhal number is directly proportion to the Darcy number, Reynolds number and the aspect ratio of the porous cylinder.

Originality/value

The present study considers unsteady laminar flow past through single permeable diamond-shaped cylinder. According to the authors’ knowledge, very few studies have been found in this field. The present findings are novel and original, which in turn can attract wide attention and citations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2023

Zhou Su, Xiangwang Kong, Tao He, Dongyu Wu, Jingjing Wu and Shaohe Zhang

Material extrusion technology is considered to be an effective way to realize the accurate and integrated manufacturing of high-performance metal diamond tools with complex…

Abstract

Purpose

Material extrusion technology is considered to be an effective way to realize the accurate and integrated manufacturing of high-performance metal diamond tools with complex structures. The present work aims to report the G4 binder that can be used to create metal composite filament loading high concentrations of large diamond particles through comparative experiments.

Design/methodology/approach

The quality of filaments was evaluated by surface topography observation and porosity measurement. And the printability of filaments was further studied by the tensile test, rheological test, shear analysis and printing test.

Findings

The results show that the G4 binder exhibits the best capacity for loading diamonds among G1–G4. The L4 filament created with G4 has no defects such as pores, cracks and patterns on the surface and section, and has the lowest porosity, which is about 1/3 of the L1. Therefore, the diamond-containing composite filament based on G4 binder exhibits the best quality. On the other hand, the results of the tensile test of L5–L8 filaments reveal that as the diamond content increases from 10% to 30%, the tensile strength of the filament decreases by 29.52%, and the retention force coefficient decreases by 15.74%. This can be attributed to the formation of inefficient bonding areas of the clustered diamond particles inside the composite filament, which also leads to a weakening of the shear strength. Despite this, the results of the printing test show that the diamond-containing composite filament based on the G4 binder has reliable printability.

Originality/value

Therefore, the G4 binder is considered to solve the most critical first challenge in the development of diamond-containing filament.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2008

Y.Q. Zu, Y.Y. Yan, W.P. Shi and L.Q. Ren

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically…

1552

Abstract

Purpose

The main objective of this work is to develop a boundary treatment in lattice Boltzmann method (LBM) for curved and moving boundaries and using this treatment to study numerically the flow around a rotating isothermal circular cylinder with/without heat transfer.

Design/methodology/approach

A multi‐distribution function thermal LBM model is used to simulate the flow and heat transfer around a rotating circular cylinder. To deal with the calculations on the surface of cylinder, a novel boundary treatment is developed.

Findings

The results of simulation for flow and heat transfer around a rotating cylinder including the evolution with time of velocity field, and the lift and drag coefficients are compared with those of previous theoretical, experimental and numerical studies. Excellent agreements show that present LBM including boundary treatment can achieve accurate results of flow and heat transfer. In addition, the effects of the peripheral‐to‐translating‐speed ratio, Reynolds number and Prandtl number on evolution of velocity and temperature fields around the cylinder are tested.

Practical implications

There is a large class of industrial processes which involve the motion of fluid passing rotating isothermal circular cylinders with/without heat transfer. Operations ranging from paper and textile making machines to glass and plastics processes are a few examples.

Originality/value

A strategy for LBM to treat curved and moving boundary with the second‐order accuracy for both velocity and temperature fields is presented. This kind of boundary treatment is very easy to implement and costs less in computational time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 September 2018

Long Zheng, Yihang Gao, Yinghui Zhong, Guolong Lu, Zhenning Liu and Luquan Ren

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Abstract

Purpose

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Design/methodology/approach

The tribological properties of nine hexagonal textures with different hexagon lengths and groove widths have been investigated under mixed lubrication to elucidate the size effect.

Findings

Overall, the friction coefficient decreases as the groove width increases within the examined range, whereas the hexagon length shows an optimal value around 3 mm. In particular, one hexagonal texture (3 × 3 mm) exhibits lower friction coefficients and less wear losses than the others. Interestingly, two hexagonal textures of similar area density (1 × 1 mm and 3 × 3 mm) yield the worst and best tribological performances, respectively, which can be explained by the simulated distribution of equivalent stress.

Originality/value

The tribological properties of nine hexagonal textures are examined under lubrication. The 3 × 3 texture exhibits lower friction coefficient and wear loss than the others. Two textures of similar area density yield the worst and best tribological performances. The results agree with the simulated distribution of equivalent stress.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 October 2020

Hangduo Gao, Zhao Yin, Jun Liu, Quansheng Zang and Gao Lin

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Abstract

Purpose

The purpose of this paper is to analyze the liquid sloshing behaviors in two-dimensional tanks with various porous baffles under the external excitation.

Design/methodology/approach

Adopting the finite element method (FEM) and control variable method to study the impacts of the height, length, number, location, shape, porous-effect parameter of the porous baffle, the external load frequency and the shape of the tank on the liquid sloshing response.

Findings

The amplitude of the free surface can be reduced effectively when the baffle opening is appropriate. The anti-sway ability of the system increases in pace with the baffle’s height growing. Under the same conditions, the shapes of the baffles have an important effect on improving the anti-sway ability of the system.

Originality/value

As there exist the differences of the velocity potential between each side of the porous baffle, which means that there are two different velocity potentials at a point on the porous baffle, the conventional finite element modeling technologies are not suitable to be applied here. To deal with this problem, the points on the porous baffle are regarded as two nodes with the same coordinate to model and calculate.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 October 2023

Aoxiang Qiu, Weimin Sang, Feng Zhou and Dong Li

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied…

Abstract

Purpose

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied to incompressible flows at a low Reynolds number, which is not sufficient to satisfy the needs of aircraft engineering. Devoted to tackling the defect, the paper proposes a developed LBM combining the subgrid model and the multiple relaxation time (MRT) approach. A multilayer adaptive Cartesian grid method to improve the computing efficiency of the traditional LBM is also employed.

Design/methodology/approach

The subgrid model and the multilayer adaptive Cartesian grid are introduced into MRT-LBM for simulations of incompressible flows at a high Reynolds number. Validated by several typical flow simulations, the numerical methods in this paper can efficiently study the flows under high Reynolds numbers.

Findings

Some numerical simulations for the lid-driven flow of cavity, flow around iced GLC305, LB606b and ONERA-M6 are completed. The paper presents the investigation results, indicating that the methods are accurate and effective for the separated flow after icing.

Originality/value

LBM is developed with the addition of the subgrid model and the MRT method. A numerical strategy is proposed using a multilayer adaptive Cartesian grid method and its treatment of boundary conditions. The paper refers to innovative algorithm developments and applications to the aircraft engineering, especially for iced wing simulations with flow separations.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2023

Shahe Liang, Zhiqiang Zhang and Aiqun Li

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design…

Abstract

Purpose

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design structure are introduced, and the two-stage and multi-stage controllable damping methods are proposed.

Design/methodology/approach

The theoretical calculation formulas of the damping force of power-law fluid variable damping viscous damper at elongated holes are derived, aiming to provide a theoretical basis for the development and application of variable damping viscous dampers. For the newly developed variable damping viscous damper, the dynamic equations for the seismic reduction system with variable damping viscous dampers under a multi-degree-of-freedom system are established. A feasible calculation and analysis method is proposed to derive the solution process of time history analysis. At the same time, a program is also developed using Matlab. The dynamic full-scale test of a two-stage variable damping viscous damper was conducted, demonstrating that the hysteresis curve is complete and the working condition is stable.

Findings

Through the calculation and analysis of examples, the results show that the seismic reduction effect of high and flexible buildings using the seismic reduction system with variable damping viscous dampers is significant. The program developed is used to analyze the seismic response of a broadcasting tower using a variable damping TMD system under large earthquakes. The results indicate that the installation of variable damping viscous dampers can effectively control the maximum inter-story displacement response of TMD water tanks and can effectively consume seismic energy.

Originality/value

This method can provide a guarantee for the safe and effective operation of TMD in wind and vibration control.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 5000