Search results

1 – 4 of 4
Article
Publication date: 7 August 2017

Wojciech Filipowski, Edyta Wrobel, Kazimierz Drabczyk, Krzysztof Waczynski, Grazyna Kulesza-Matlak and Marek Lipinski

The main aim of this study was a preparation development of dopant solution (DS) which can be deposited by a spray-on method and subsequently allows obtaining the n+ emitter layer…

Abstract

Purpose

The main aim of this study was a preparation development of dopant solution (DS) which can be deposited by a spray-on method and subsequently allows obtaining the n+ emitter layer with surface resistance in the range of 65-80 Ω−1. The intention of chosen spray-on method was to gain a cheaper way of dopant source deposition, compared to the commonly used methods, which is of particular importance for the new low-cost production processes.

Design/methodology/approach

This paper presents the sequence in producing a spray-on glass solution (DS) with very high concentration of phosphorus, which allows to perform diffusion doping at relatively low temperatures. DS contained deionized water, ethyl alcohol, tetraethoxysilane and othophosphoric acid.

Findings

The sequence in producing a DS was performed with respect to enabling the application to silicon wafers by spray-on method. Furthermore, the equations defined density and viscosity of DS in term of storage time were referred to determine the possibility of applying this solution by spray-on method. Besides, the dependence of the emitter surface resistance on the doping (diffusion) time was determined. Accordingly, optimal process conditions were specified.

Originality/value

The paper presents a new, so far unpublished composition of DS with very high concentration of phosphorus, which can be applied using a spray-on method. Moreover, original are also investigations respecting some properties of obtained DS relative to storage time.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2017

Wojciech Filipowski, Zbigniew Pruszowski, Krzysztof Waczynski, Piotr Kowalik and Jan Kulawik

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless…

Abstract

Purpose

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless metallization on its electric parameters and structure. On the basis of the research conducted, the existence of a relationship between resistance (R) and the temperature coefficient of resistance (TCR) of the test structure with a Ni-P alloy-based layer and the temperature of stabilization was proposed.

Design/methodology/approach

Metallic Ni-P layers were deposited on sensitized and activated substrates. Metallization was conducted in an aqueous solution containing two primary ingredients: sodium hypophosphite and nickel chloride. The concentration of both ingredients was (50-70) g/dm3. The process lasted 60 min, and the metallization bath pH was kept at 2.1-2.2, whereas the temperature was maintained at 363 K. The thermal stabilization process was conducted in different temperatures between 453 and 623 K. After the technological processes, the resistance and TCR of the test structures were measured with a micro ohmmeter. The composition and the morphology of the resistive layer of the structures examined was also determined.

Findings

The dependence of the resistance on the temperature of the stabilization process for the temperature range 553 to 623 K was described using mathematical relationships. The TCR of test resistors at the same thermal stabilization temperature range was also described using a mathematical equation. The measurements show that the resistive layer contains 82.01 at.% of nickel (Ni) and 17.99 at.% of phosphorus (P).

Originality/value

The results associate a surface morphology Ni-P alloy with the resistance and TCR according to temperature stabilization. The paper presents mathematical relationships that have not been described in the literature available.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 July 2018

Wojciech Filipowski, Kazimierz Drabczyk, Edyta Wróbel, Piotr Sobik, Krzysztof Waczynski and Natalia Waczynska-Niemiec

The purpose of this paper is to develop a method of preparing spray-on dopant solutions that enable obtaining a p+ region forming a back-surface field (BSF) during the diffusion…

Abstract

Purpose

The purpose of this paper is to develop a method of preparing spray-on dopant solutions that enable obtaining a p+ region forming a back-surface field (BSF) during the diffusion doping process. The spray-on method used allows to decrease the costs of dopant solution application, which is particularly significant for new low-cost production processes.

Design/methodology/approach

This paper presents steps of production of high concentration boron dopant solutions enabling diffusion doping of crystalline p-type silicon surfaces. To check the fabricated dopant solutions for stability and suitability for spray-on application, their viscosity and density were measured in week-long intervals. The dopant solutions described in this paper were used in a series of diffusion doping processes to confirm their suitability for BSF production.

Findings

A method of preparing dopant solutions with parameters enabling depositing them on silicon wafers by the spray-on method has been established. Due to hygroscopic properties of the researched dopant solutions, a maximum surrounding atmosphere humidity has been established. The solutions should not be applied by the spray-on method, if this humidity value is exceeded. The conducted derivatographic examination enabled establishing optimal drying conditions.

Originality/value

The paper presents a new composition of a dopant solution which contains high concentration of boron and may be applied by the spray-on method. Derivatographic examination results, as well as equations describing the relation between dopant solution density and viscosity and storage time are also original for this research. The established dependencies between the sheet resistance of the fabricated BSF and the diffusion doping time are other new elements described in the paper.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 August 2016

Kazimierz Drabczyk, Edyta Wróbel, Grazyna Kulesza-Matlak, Wojciech Filipowski, Krzysztof Waczynski and Marek Lipinski

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid…

Abstract

Purpose

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid dopant solution. To decrease prices of industrially produced silicon-based solar cells, the new low-cost production processes are necessary. The main components of most popular silicon solar cells are with diffused emitter layer, passivation, anti-reflective layers and metal electrodes. This type of cells is prepared usually using phosphorus oxychloride diffusion source and metal pastes for screen printing. The diffusion process in diffusion furnace with quartz tube is slow, complicated and requires expensive equipment. The alternative for this technology is very fast in-line processing using the belt furnaces as an equipment. This approach requires different dopant sources.

Design/methodology/approach

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution. The investigation was focused on dopant sources fabrication and diffusion processes. The doping solution was made in two stages. In the first stage, a base solution (without dopants) was made: dropwise deionized (DI) water and ethyl alcohol were added to a solution consisting of tetraethoxysilane (TEOS) and 99.8 per cent ethyl alcohol. Next, to the base solution, orthophosphoric acid dissolved in ethyl alcohol was added.

Findings

Diffused emitter layers with sheet resistance around 60 Ω/sq were produced on solar grade monocrystalline silicon wafers using two types of dopant sources.

Originality/value

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Year

Content type

Article (4)
1 – 4 of 4