Search results

1 – 1 of 1
Article
Publication date: 27 March 2020

George-Konstantinos Gaitanakis, George Limnaios and Konstantinos Zikidis

Modern fighter aircraft using active electronically scanned array (AESA) fire control radars are able to detect and track targets at long ranges, in the order of 50 nautical miles…

Abstract

Purpose

Modern fighter aircraft using active electronically scanned array (AESA) fire control radars are able to detect and track targets at long ranges, in the order of 50 nautical miles or more. Low observable or stealth technology has contested the radar capabilities, reducing detection/tracking ranges roughly to one-third (or even less, for fighter aircraft radar). Hence, infrared search and track (IRST) systems have been reconsidered as an alternative to the radar. This study aims to explore and compare the capabilities and limitations of these two technologies, AESA radars and IRST systems, as well as their synergy through sensor fusion.

Design/methodology/approach

The AESA radar range is calculated with the help of the radar equation under certain assumptions, taking into account heat dissipation requirements, using the F-16 fighter as a case study. Concerning the IRST sensor, a new model is proposed for the estimation of the detection range, based on the emitted infrared radiation caused by aerodynamic heating.

Findings

The maximum detection range provided by an AESA radar could be restricted because of the increased waste heat which is produced and the relevant constraints concerning the cooling capacity of the carrying aircraft. On the other hand, IRST systems exhibit certain advantages over radars against low observable threats. IRST could be combined with a datalink with the help of data fusion, offering weapons-quality track.

Originality/value

An original approach is provided for the IRST detection range estimation. The AESA/IRST comparison offers valuable insight, while it allows for more efficient planning, at the military acquisition phase, as well as at the tactical level.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1