Search results

1 – 2 of 2
Article
Publication date: 14 June 2024

Jie Wu, Kang Wang, Ming Zhang, Leilei Guo, Yongpeng Shen, Mingjie Wang, Jitao Zhang and Vaclav Snasel

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge…

Abstract

Purpose

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings.

Design/methodology/approach

In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure.

Findings

This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min.

Originality/value

This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 October 2022

Wenping Xu, Jitao Xu, David Proverbs and Yuwan Zhang

In modern urban governance, rescue materials storage points (RMSP) are a vital role to be considered in responding to public emergencies and improving a city's emergency…

Abstract

Purpose

In modern urban governance, rescue materials storage points (RMSP) are a vital role to be considered in responding to public emergencies and improving a city's emergency management. This study analyzes the siting of community-centered relief supply facilities.

Design/methodology/approach

Combining grey relational analysis, complex network and relative entropy, a new multi criteria method is proposed. It pays more attention to the needs of the community, taking into account the use of community hospitals, fire centers and neighborhood offices to establish small RMSP.

Findings

The research results firstly found suitable areas for RMSP site selection, including Hanyang, Qiaokou, Jiangan and Wuchang. The top 10 nodes in each region are found as the location of emergency facilities, and the network parameters are higher than ordinary nodes in traffic networks. The proposed method was applied in Wuhan, China and the method was verified by us-ing a complex network model combined with multi-criteria decision-making for emergency facility location.

Practical implications

This method solves the problem of how to choose the optimal solution and reduces the difficulty for decision makers. This method will help emergency managers to locate and plan RMSP more simply, especially in improving emergency siting modeling techniques and additionally in providing a reference for future research.

Originality/value

The method proposed in this study is beneficial to improve the decision-making ability of urban emergency departments. Using complex networks and comprehensive evaluation techniques, RMSP is incorporated into the urban community emergency network as a critical rescue force. More importantly, the findings highlight a new direction for further research on urban emergency facilities site selection based on a combination of sound theoretical basis as well as empirical evidence gained from real life case-based analysis.

Highlights:

  1. Material reserve points are incorporated into the emergency supply network to maintain the advantage of quantity.

  2. Build emergency site selection facilities centered on urban communities.

  3. Use a complex network model to select the location of emergency supplies storage sites.

Material reserve points are incorporated into the emergency supply network to maintain the advantage of quantity.

Build emergency site selection facilities centered on urban communities.

Use a complex network model to select the location of emergency supplies storage sites.

Details

Kybernetes, vol. 53 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 2 of 2