Search results

1 – 3 of 3
Article
Publication date: 5 June 2017

Issa Mousaa and Hamdi Radi

In the present work, under severe conditions of an inert atmosphere and high temperature, epoxidized natural rubber (ENR) with 25 per cent epoxidation level reacts with different…

Abstract

Purpose

In the present work, under severe conditions of an inert atmosphere and high temperature, epoxidized natural rubber (ENR) with 25 per cent epoxidation level reacts with different aliphatic amine compounds such as ethyl amine (EA), propyl amine (PA) and butyl amine (BA) to prepare ENR/EA, ENR/PA, ENR/BA compounds as, respectively. The produced compounds were characterized by Fourier transform infrared spectroscopy and oxirane oxygen content determination. Different concentrations of the produced compounds were added to epoxy and urethane acrylate coating formulations to evaluate them as corrosion inhibitors for mild steel under UV irradiation. Corrosion resistance tests and weight loss measurements of the coated steel panels were made. It was found that coating formulations containing the prepared ENR/EA compound could protect metal surface from corrosion, and corrosion inhibitors efficiency of the prepared compounds were arranged as follows: ENR/EA > ENR/PA > ENR/BA. The optimum concentrations for all inhibitors which give the best inhibition efficiency for corrosion are 0.4-0.6 phr.

Design/methodology/approach

Corrosion scratch tests were carried out according to ASTM D 1,654-92 (2000). The weight loss of coated steel was measured according to ASTM D 2,688-94 (1999). The measurement of film hardness was carried out with a Wolff–Wilborn pencil hardness tester according to ASTM D 3,363 (2000).

Findings

It was found that coating formulations containing the prepared ENR/EA compound could protect metal surface from corrosion and corrosion inhibitors efficiency of the prepared compounds were arranged as follows: ENR/EA > ENR/PA > ENR/BA. The optimum concentrations for all inhibitors are 0.4-0.6 g/100g coating.

Originality/value

A highly efficient and economically corrosion inhibitors for mild steel were prepared from ENR and series of aliphatic amines.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 January 2024

Evrim Baran Aydın, Eyüp Başaran, Sevgi Ateş and Reşit Çakmak

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a…

Abstract

Purpose

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a Schiff base synthesized and characterized for the first time, to the authors’ knowledge, as a novel inhibitor against corrosion of mild steel (MS) in hydrochloric acid solution.

Design/methodology/approach

HEMAP was characterized by some spectroscopic methods including High-Resolution Mass Spectrometry (HRMS), Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, the inhibition efficiency of HEMAP on MS in a hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). To explain the inhibition mechanism, the surface charge, adsorption isotherms and thermodynamic parameters of MS in the inhibitor solution were studied.

Findings

EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution. The adsorption of HEMAP on the MS surface was found to be compatible with the Langmuir model isotherm. The thermodynamic parameter results showed that the standard free energy of adsorption of HEMAP on the MS surface was found to be more chemical than physical.

Originality/value

This study is important in terms of demonstrating the performance of the first synthesized HEMAP molecule as an inhibitor against the corrosion of MS in acidic media. EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 February 2022

Hakan F. Oztop, Rıdvan Özgül and Fatih Selimefendigil

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two…

Abstract

Purpose

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two dimensional model of data center and installation of PCM at different locations.

Design/methodology/approach

Finite volume method was used for the unsteady problem, while impacts of air velocity and PCM location on the flow field, thermal pattern variations and phase change dynamics were evaluated. Three different locations of the PCM were considered while air velocity was also varied during the simulation. Thermal field variations and cooling performance of the system for different PCM location scenarios were compared.

Findings

It was observed that the installation of the PCM has significant impacts on the vortex formation, thermal field variation within the system and its performance. The left, right and top wall installation of the PCM changed the thermal patterns near the heat cell of the data centre. The phase change process is fast for the upper wall installation of the PCM, while the discrepancy of the melt fraction dynamics between different air flow at this position is minimum. The case where PCM placed in the upper wall at the highest air velocity is the best configuration in terms of heat storage. The utilization of PCM and changing its locations provide an excellent tool for thermal management and cooling performance of data centre.

Originality/value

Results of this study can be used for initial design and optimization of cooling systems for thermal management of data centers while the importance of the high-performance computing becomes very crucial for the advanced simulations in different technological applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3