Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 28 June 2024

Mohanraj R., Abdul Basith S. N., Chandru S, Gowtham D and Pradeep Kumar M

Wire arc additive manufacturing (WAAM) is one of the most researched and fastest-growing AM technique because of its capability to produce larger components with medium…

307

Abstract

Purpose

Wire arc additive manufacturing (WAAM) is one of the most researched and fastest-growing AM technique because of its capability to produce larger components with medium complexity. In recent times, the use of WAAM process has been increased because of its ability to produce complex components economically when compared with other AM techniques. The purpose of this study is to investigate the capabilities of wire arc additive manufacturing (WAAM), which has emerged as a recognized method for fabricating larger components with complex geometries.

Design/methodology/approach

This paper provides a review of process parameters for optimizing and analyzing mechanical properties, hardness, microstructure and corrosion behavior achieved through various WAAM-based techniques.

Findings

Limited analysis exists regarding the mechanical properties of various orientations of Inconel 625 alloy. Moreover, there is a lack of studies concerning the corrosion behavior of Inconel 625 alloy fabricated using WAAM.

Originality/value

The review identifies that the formation of intermetallic phases reduces the desirability of mechanical properties and corrosion resistance of WAAM-fabricated Inconel 625 alloy. Additionally, the study reported notable results obtained by various research studies and the improvements to be achieved in the future.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 29 April 2022

Yunpeng Zhang, Huiwen Huang, Dingguo Shao, Xinsheng Yang and Changgeng Zhang

This study aims to develop a finite element method based co-simulation platform for the numerical analysis of motor drive system. With the rising requirement of industry, the…

169

Abstract

Purpose

This study aims to develop a finite element method based co-simulation platform for the numerical analysis of motor drive system. With the rising requirement of industry, the comprehensive design of motor drive systems has attracted increasing attentions. An accurate model, which considers the coupling between motor and its drive system, is vital for the analysis and design of motor drive system.

Design/methodology/approach

Considering the coupling relationship between motor and its drive system, a flexible and extensible co-simulation platform of motor drive system is developed with the C++ language and finite element machine model to carry out the comprehensive analysis of motor drive system. The control system simulation program developed with C++ language adopts the same discrete form as the single-chip microcomputer and can simulate the interrupt mechanism, making the simulation closer to the actual control system. With the finite element analysis results of current step, the winding input voltage of next step is calculated by the executable program of control system and is fed into the finite element analysis, forming the two-way coupling analysis of drive system.

Findings

Preliminary studies, such as calculation of machine core losses fed by inverters, and control parameters optimization, are conducted with this platform, which shows the flexibility and expansibility of this platform.

Originality/value

The power inverter circuit along with the controller is modeled using the C++ language, and embedded into the finite element machine model to achieve more realistic motor drive system simulation and complex functions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 23 October 2023

Shu-Hao Chang

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…

64

Abstract

Purpose

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.

Design/methodology/approach

Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.

Findings

The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.

Originality/value

Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.

Details

International Journal of Innovation Science, vol. 17 no. 2
Type: Research Article
ISSN: 1757-2223

Keywords

1 – 3 of 3
Per page
102050