Mohanraj R., Abdul Basith S. N., Chandru S, Gowtham D and Pradeep Kumar M
Wire arc additive manufacturing (WAAM) is one of the most researched and fastest-growing AM technique because of its capability to produce larger components with medium…
Abstract
Purpose
Wire arc additive manufacturing (WAAM) is one of the most researched and fastest-growing AM technique because of its capability to produce larger components with medium complexity. In recent times, the use of WAAM process has been increased because of its ability to produce complex components economically when compared with other AM techniques. The purpose of this study is to investigate the capabilities of wire arc additive manufacturing (WAAM), which has emerged as a recognized method for fabricating larger components with complex geometries.
Design/methodology/approach
This paper provides a review of process parameters for optimizing and analyzing mechanical properties, hardness, microstructure and corrosion behavior achieved through various WAAM-based techniques.
Findings
Limited analysis exists regarding the mechanical properties of various orientations of Inconel 625 alloy. Moreover, there is a lack of studies concerning the corrosion behavior of Inconel 625 alloy fabricated using WAAM.
Originality/value
The review identifies that the formation of intermetallic phases reduces the desirability of mechanical properties and corrosion resistance of WAAM-fabricated Inconel 625 alloy. Additionally, the study reported notable results obtained by various research studies and the improvements to be achieved in the future.
Details
Keywords
Yunpeng Zhang, Huiwen Huang, Dingguo Shao, Xinsheng Yang and Changgeng Zhang
This study aims to develop a finite element method based co-simulation platform for the numerical analysis of motor drive system. With the rising requirement of industry, the…
Abstract
Purpose
This study aims to develop a finite element method based co-simulation platform for the numerical analysis of motor drive system. With the rising requirement of industry, the comprehensive design of motor drive systems has attracted increasing attentions. An accurate model, which considers the coupling between motor and its drive system, is vital for the analysis and design of motor drive system.
Design/methodology/approach
Considering the coupling relationship between motor and its drive system, a flexible and extensible co-simulation platform of motor drive system is developed with the C++ language and finite element machine model to carry out the comprehensive analysis of motor drive system. The control system simulation program developed with C++ language adopts the same discrete form as the single-chip microcomputer and can simulate the interrupt mechanism, making the simulation closer to the actual control system. With the finite element analysis results of current step, the winding input voltage of next step is calculated by the executable program of control system and is fed into the finite element analysis, forming the two-way coupling analysis of drive system.
Findings
Preliminary studies, such as calculation of machine core losses fed by inverters, and control parameters optimization, are conducted with this platform, which shows the flexibility and expansibility of this platform.
Originality/value
The power inverter circuit along with the controller is modeled using the C++ language, and embedded into the finite element machine model to achieve more realistic motor drive system simulation and complex functions.
Details
Keywords
Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…
Abstract
Purpose
Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.
Design/methodology/approach
Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.
Findings
The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.
Originality/value
Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.