Search results

1 – 3 of 3
Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, Didier Fokwa and Ghislain Tchuen

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified…

Abstract

Purpose

For this purpose, a linear stability analysis based on the Navier–Stokes and Maxwell equations is made leading to an eigenvalue differential equation of the modified Orr–Sommerfeld type which is solved numerically by the spectral collocation method based on Chebyshev polynomials. Unlike previous studies, blood is considered as a non-Newtonian fluid. The effects of various parameters such as volume fraction of nanoparticles, Casson parameter, Darcy number, Hartmann number on flow stability were examined and presented. This paper aims to investigate a linear stability analysis of non-Newtonian blood flow with magnetic nanoparticles with an application to controlled drug delivery.

Design/methodology/approach

Targeted delivery of therapeutic agents such as stem cells and drugs using magnetic nanoparticles with the help of external magnetic fields is an emerging treatment modality for many diseases. To this end, controlling the movement of nanoparticles in the human body is of great importance. This study investigates controlled drug delivery by using magnetic nanoparticles in a porous artery under the influence of a magnetic field.

Findings

It was found the following: the Casson parameter affects the stability of the flow by amplifying the amplitude of the disturbance which reflects its destabilizing effect. It emerges from this study that the taking into account of the non-Newtonian character is essential in the modeling of such a system, and that the results can be very different from those obtained by supposing that the blood is a Newtonian fluid. The presence of iron oxide nanoparticles in the blood increases the inertia of the fluid, which dampens the disturbances. The Strouhal number has a stabilizing effect on the flow which makes it possible to say that the oscillating circulation mechanisms dampen the disturbances. The Darcy number affects the stability of the flow and has a stabilizing effect, which makes it possible to increase the contact surface between the nanoparticles and the fluid allowing very high heat transfer rates to be obtained. It also emerges from this study that the presence of the porosity prevents the sedimentation of the nanoparticles. By studying the effect of the magnetic field on the stability of the flow, it is observed that the Hartmann number keeps the flow completely stable. This allows saying that the magnetic field makes the dissipations very important because the kinetic energy of the electrically conductive ferrofluid is absorbed by the Lorentz force.

Originality/value

The originality of this paper resides on the application of the linear stability analysis for controlled drug delivery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2021

Pascalin Tiam Kapen, Cédric Gervais Njingang Ketchate, DIdier Fokwa and Ghislain Tchuen

This paper aims to investigate a linear and temporal stability analysis of hybrid nanofluid flow between two parallel plates filled with a porous medium and whose lower plate is…

Abstract

Purpose

This paper aims to investigate a linear and temporal stability analysis of hybrid nanofluid flow between two parallel plates filled with a porous medium and whose lower plate is fixed and the upper plate animated by a uniform rectilinear motion.

Design/methodology/approach

The nanofluid is composed of water as a regular fluid, silver (Ag) and alumina (Al2O3) as nanoparticles. The mathematical model takes into account other effects such as the magnetic field and the aspiration (injection/suction). Under the assumption of a low magnetic Reynolds number, a modified Orr–Sommerfeld-type eigenvalue differential equation governing flow stability was derived and solved numerically by Chebyshev’s spectral collocation method. The effects of parameters such as volume fraction, Darcy number, injection/suction Reynolds number, Hartmann number were analyzed.

Findings

It was found the following: the Darcy number affects the stability of the flow, the injection/suction Reynolds number has a negligible effect, the volume fraction damped disturbances and the magnetic field plays a very important role in enlarging the area of flow stability.

Originality/value

The originality of this work resides in the linear and temporal stability analysis of hydromagnetic Couette flow for hybrid nanofluid through porous media with small suction and injection effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3