Search results

1 – 2 of 2
Article
Publication date: 12 June 2017

M.P. Jenarthanan, R. Gokulakrishnan, B. Jagannaath and P. Ganesh Raj

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Abstract

Purpose

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Design/methodology/approach

In multi-objective optimization, weight criteria of each objective are important for producing better and accurate solutions. This method has been employed for simultaneous minimization of surface roughness, cutting force and delamination factor. Experiments were planned using Taguchi’s orthogonal array with the machining parameters, namely, helix angle of the end mill cutter, spindle speed, feed rate and depth of cut were optimized with considerations of multiple response characteristics, including machining force, surface roughness and delamination as the responses. PCA is adopted to find the weight factors involved for all objectives. Finally analysis of variance concept is employed on multi-SN ratio to find out the relative significance of machining parameter in terms of their percentage contribution.

Findings

The multi-SN ratio is achieved by the product of weight factor and SN ratio to the performance characteristics in the utility concept. The results show that a combination of machining parameters for the optimized results has helix angle of 35°, machining speed of 4,000 m/min, feed rate of 750 mm/rev and depth of cut of 2.0 mm.

Originality/value

Effect of milling of GFRP composites on delamination factor, surface roughness and machining force with various helix angle solid carbide end mill has not been analysed yet using PCA techniques.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2018

Naresh Neeli, M.P. Jenarthanan and G. Dileep Kumar

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced…

Abstract

Purpose

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced plastic (GFRP) composites using grey relational analysis (GRA) and desirability function analysis (DFA).

Design/methodology/approach

In this work, experiments were carried out as per the Taguchi experimental design and an L27 orthogonal array was used to study the influence of various combinations of process parameters on surface roughness and delamination factor. As a dynamic approach, the multiple response optimisation was carried out using GRA and DFA for simultaneous evaluation. These two methods are best suited for multiple criteria evaluation and are also not much complicated.

Findings

The process parameters were found optimum at a fibre orientation angle of 15°, helix angle of 25°, spindle speed of 6,000 rpm, and a feed rate of 0.04 mm/rev. Analysis of variance was employed to classify the significant parameters affecting the responses. The results indicate that the fibre orientation angle is the most significant parameter preceded by helix angle, feed rate, and spindle speed for GFRP composites.

Originality/value

An attempt to optimise surface roughness and delamination factor together by combined approach of GRA and DFA has not been previously done.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Access

Year

Content type

Article (2)
1 – 2 of 2