Essays in Honor of Joon Y. Park: Econometric Theory: Volume 45A
Table of contents
(14 chapters)Part I: Nonstationarity, Unit Roots, and Fractional Noise
Abstract
The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency domain form of the model for a fractional process. This representation is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter
Abstract
This chapter derives asymptotic properties of the least squares (LS) estimator of the autoregressive (AR) parameter in local to unity processes with errors being fractional Gaussian noise (FGN) with the Hurst parameter
Abstract
The authors propose a family of tests for stationarity against a local unit root. It builds on the Karhunen–Loève (KL) expansions of the limiting CUSUM process under the null hypothesis and a local alternative. The variance ratio type statistic
Abstract
In this study, the authors investigate methods of sequential analysis to test prospectively for the existence of a unit root against stationary or explosive states in a p-th order autoregressive (AR) process monitored over time. Our sequential sampling schemes use stopping times based on the observed Fisher information of a local-to-unity parameter. In contrast to the Dickey–Fuller (DF) test statistic, the sequential test statistic has asymptotic normality. The authors derive the joint limit of the test statistic and the stopping time, which can be characterized using a 3/2-dimensional Bessel process driven by a time-changed Brownian motion. The authors obtain their limiting joint Laplace transform and density function under the null and local alternatives. In addition, simulations are conducted to show that the theoretical results are valid.
Part II: Nonlinearity
Abstract
Joon Y. Park is one of the pioneers in developing nonlinear cointegrating regression. Since his initial work with Phillips (Park & Phillips, 2001) in the area, the past two decades have witnessed a surge of interest in modeling nonlinear nonstationarity in macroeconomic and financial time series, including parametric, nonparametric and semiparametric specifications of such models. These developments have provided a framework of econometric estimation and inference for a wide class of nonlinear, nonstationary relationships. In honor of Joon Y. Park, this chapter contributes to this area by exploring nonparametric estimation of functional-coefficient cointegrating regression models where the structural equation errors are serially dependent and the regressor is endogenous. The self-normalized local kernel and local linear estimators are shown to be asymptotic normal and to be pivotal upon an estimation of co-variances. Our new results improve those of Cai et al. (2009) and open up inference by conventional nonparametric method to a wide class of potentially nonlinear cointegrated relations.
Abstract
This chapter proposes a test for a parametric specification of the autoregressive function of a given stationary autoregressive time series. This test is based on the integrated square difference between the empirical distribution function estimate and a convolution-type distribution function estimate of the stationary distribution function obtained from the autoregressive residuals. Some asymptotic properties of the proposed convolution-type distribution function estimate are studied when the model’s innovation density is unknown. These properties are in turn used to derive the asymptotic null distribution of the proposed test statistic. We also discuss some finite sample properties of the test statistic based on the block bootstrap methodology. A simulation study shows that the proposed test competes favorably with some existing tests in terms of the empirical level and power.
Abstract
This chapter develops an asymptotic theory for a general transformation model with a time trend, stationary regressors, and unit root nonstationary regressors. This model extends that of Han (1987) to incorporate time trend and nonstationary regressors. When the transformation is specified as an identity function, the model reduces to the conventional cointegrating regression, possibly with a time trend and other stationary regressors, which has been studied in Phillips and Durlauf (1986) and Park and Phillips (1988, 1989). The limiting distributions of the extremum estimator of the transformation parameter and the plug-in estimators of other model parameters are found to critically depend upon the transformation function and the order of the time trend. Simulations demonstrate that the estimators perform well in finite samples.
Abstract
The authors derive a risk lower bound in estimating the threshold parameter without knowing whether the threshold regression model is continuous or not. The bound goes to zero as the sample size n grows only at the cube-root rate. Motivated by this finding, the authors develop a continuity test for the threshold regression model and a bootstrap to compute its p-values. The validity of the bootstrap is established, and its finite-sample property is explored through Monte Carlo simulations.
Part III: Inference and Prediction Using Models with Trending Series
Abstract
The authors propose a semiparametric approach for testing independence between two infinite-order cointegrated vector autoregressive series (IVAR(∞)). The procedures considered can be viewed as extensions of classical methods proposed by Haugh (1976, JASA) and Hong (1996b, Biometrika) for testing independence between stationary univariate time series. The tests are based on the residuals of long autoregressions, hence allowing for computational simplicity, weak assumptions on the form of the underlying process, and a direct interpretation of the results in terms of innovations (or shocks). The test statistics are standardized versions of the sum of weighted squares of residual cross-correlation matrices. The weights depend on a kernel function and a truncation parameter. Multivariate portmanteau statistics can be viewed as a special case of our procedure based on the truncated uniform kernel. The asymptotic distributions of the test statistics under the null hypothesis are derived, and consistency is established against fixed alternatives of serial cross-correlation of unknown form. A simulation study is presented which indicates that the proposed tests have good size and power properties in finite samples.
Abstract
It is widely documented that while contemporaneous spot and forward financial prices trace each other extremely closely, their difference is often highly persistent and the conventional cointegration tests may suggest lack of cointegration. This chapter studies the possibility of having cointegrated errors that are characterized simultaneously by high persistence (near-unit root behavior) and very small (near zero) variance. The proposed dual parameterization induces the cointegration error process to be stochastically bounded which prevents the variables in the cointegrating system from drifting apart over a reasonably long horizon. More specifically, this chapter develops the appropriate asymptotic theory (rate of convergence and asymptotic distribution) for the estimators in unconditional and conditional vector error correction models (VECM) when the error correction term is parameterized as a dampened near-unit root process (local-to-unity process with local-to-zero variance). The important differences in the limiting behavior of the estimators and their implications for empirical analysis are discussed. Simulation results and an empirical analysis of the forward premium regressions are also provided.
Abstract
The author develops and extends the asymptotic F- and t-test theory in linear regression models where the regressors could be deterministic trends, unit-root processes, near-unit-root processes, among others. The author considers both the exogenous case where the regressors and the regression error are independent and the endogenous case where they are correlated. In the former case, the author designs a new set of basis functions that are invariant to the parameter estimation uncertainty and uses them to construct a new series long-run variance estimator. The author shows that the F-test version of the Wald statistic and the t-statistic are asymptotically F and t distributed, respectively. In the latter case, the author shows that the asymptotic F and t theory is still possible, but one has to develop it in a pseudo-frequency domain. The F and t approximations are more accurate than the more commonly used chi-squared and normal approximations. The resulting F and t tests are also easy to implement – they can be implemented in exactly the same way as the F and t tests in a classical normal linear regression.
Abstract
This chapter considers the estimation of a parametric single-index predictive regression model with integrated predictors. This model can handle a wide variety of non-linear relationships between the regressand and the single-index component containing either the cointegrated predictors or the non-cointegrated predictors. The authors introduce a new estimation procedure for the model and investigate its finite sample properties via Monte Carlo simulations. This model is then used to examine stock return predictability via various combinations of integrated lagged economic and financial variables.
Abstract
This chapter introduces the best linear predictor (BLP) with the asymptotic minimum mean squared forecasting error (MSFE) among linear predictors of variables in cointegrated systems. Accordingly, the authors show that (i) if the autocorrelation coefficient of the cointegration error between the prediction time and the predicted targeting time is larger than ½ (representing a short prediction period), then the BLP is deduced from the random walk model; and (ii) in other cases (representing a long prediction period), the BLP is deduced from the cointegration model. Under this scheme, we suggest a switching predictor that automatically selects the random walk or cointegration model according to the size of the estimated autocorrelation coefficient. These results effectively explain the superiority reversal in the short- and long-term prediction of the exchange rate between the random walk and the structural/cointegration model (known as the Meese–Rogoff or disconnect puzzle).
- DOI
- 10.1108/S0731-9053202345A
- Publication date
- 2023-04-24
- Book series
- Advances in Econometrics
- Editors
- Series copyright holder
- Emerald Publishing Limited
- ISBN
- 978-1-83753-209-4
- eISBN
- 978-1-83753-208-7
- Book series ISSN
- 0731-9053