Machine learning applications to predict the axial compression capacity of concrete filled steel tubular columns: a systematic review
Multidiscipline Modeling in Materials and Structures
ISSN: 1573-6105
Article publication date: 30 December 2022
Issue publication date: 24 February 2023
Abstract
Purpose
This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).
Design/methodology/approach
Concrete-filled steel tubular (CFST) columns have gained popularity in construction in recent decades as they offer the benefit of constituent materials and cost-effectiveness. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Gene Expression Programming (GEP) and Decision Trees (DTs) are some of the approaches that have been widely used in recent decades in structural engineering to construct predictive models, resulting in effective and accurate decision making. Despite the fact that there are numerous research studies on the various parameters that influence the axial compression capacity (ACC) of CFST columns, there is no systematic review of these Machine Learning methods.
Findings
The implications of a variety of structural characteristics on machine learning performance parameters are addressed and reviewed. The comparison analysis of current design codes and machine learning tools to predict the performance of CFST columns is summarized. The discussion results indicate that machine learning tools better understand complex datasets and intricate testing designs.
Originality/value
This study examines machine learning techniques for forecasting the axial bearing capacity of concrete-filled steel tubular (CFST) columns. This paper also highlights the drawbacks of utilizing existing techniques to build CFST columns, and the benefits of Machine Learning approaches over them. This article attempts to introduce beginners and experienced professionals to various research trajectories.
Keywords
Citation
Narang, A., Kumar, R. and Dhiman, A. (2023), "Machine learning applications to predict the axial compression capacity of concrete filled steel tubular columns: a systematic review", Multidiscipline Modeling in Materials and Structures, Vol. 19 No. 2, pp. 197-225. https://doi.org/10.1108/MMMS-09-2022-0195
Publisher
:Emerald Publishing Limited
Copyright © 2022, Emerald Publishing Limited