Multi-stage skewed grey cloud clustering model and its application
Grey Systems: Theory and Application
ISSN: 2043-9377
Article publication date: 6 October 2023
Issue publication date: 15 January 2024
Abstract
Purpose
The possibility function-based grey clustering model has evolved into a complete approach for dealing with uncertainty evaluation problems. Existing models still have problems with the choice dilemma of the maximum criteria and instances when the possibility function may not accurately capture the data's randomness. This study aims to propose a multi-stage skewed grey cloud clustering model that blends grey and randomness to overcome these problems.
Design/methodology/approach
First, the skewed grey cloud possibility (SGCP) function is defined, and its digital characteristics demonstrate that a normal cloud is a particular instance of a skewed cloud. Second, the border of the decision paradox of the maximum criterion is established. Third, using the skewed grey cloud kernel weight (SGCKW) transformation as a tool, the multi-stage skewed grey cloud clustering coefficient (SGCCC) vector is calculated and research items are clustered according to this multi-stage SGCCC vector with overall features. Finally, the multi-stage skewed grey cloud clustering model's solution steps are then provided.
Findings
The results of applying the model to the assessment of college students' capacity for innovation and entrepreneurship revealed that, in comparison to the traditional grey clustering model and the two-stage grey cloud clustering evaluation model, the proposed model's clustering results have higher identification and stability, which partially resolves the decision paradox of the maximum criterion.
Originality/value
Compared with current models, the proposed model in this study can dynamically depict the clustering process through multi-stage clustering, ensuring the stability and integrity of the clustering results and advancing grey system theory.
Keywords
Acknowledgements
This study was supported by the Higher Education Reform and Practice Project of Henan Province (Nos. 2021SJGLX160, 2021SJGLX016); and the Academic Degrees & Graduate Education Reform Project of Henan Province (No. 2021SJGLX014Y).
Citation
Yang, J., Zhang, M., Shangguan, L. and Shi, J. (2024), "Multi-stage skewed grey cloud clustering model and its application", Grey Systems: Theory and Application, Vol. 14 No. 1, pp. 49-68. https://doi.org/10.1108/GS-05-2023-0043
Publisher
:Emerald Publishing Limited
Copyright © 2023, Emerald Publishing Limited