To read this content please select one of the options below:

Supervised learning to covering cost risk through post-construction evaluation of transportation projects by project delivery methods

Junseo Bae (Division of Smart Cities, Korea University - Sejong Campus, Sejong, South Korea)

Engineering, Construction and Architectural Management

ISSN: 0969-9988

Article publication date: 25 June 2024

99

Abstract

Purpose

The main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the multiple project changes experienced and (2) uncover the hidden link of the learning networks using a curve-fitting technique for the post-construction evaluation of cost contingency amounts to cover cost risk for future projects.

Design/methodology/approach

Based on a total of 1,434 datapoints collected from DBB and DB transportation projects, a post-construction cost contingency learning model was developed using feedforward neural networks (FNNs). The developed model generalizes cost contingencies under two different project delivery methods (i.e. DBB and DB). The learning outputs of generalized contingency amounts were curve-fitted with the post-construction schedule and cost information, specifically aiming at uncovering the hidden link of the FNNs. Two different bridge projects completed under DBB and DB were employed as illustrative examples to demonstrate how the proposed modeling framework could be implemented.

Findings

With zero or negative values of change growth experienced, it was concluded that cost contingencies were overallocated at the contract stage. On the other hand, with positive values of change growth experienced, it was evaluated that set cost contingencies were insufficient from the post-construction standpoint. Taken together, this study proposed a tangible post-construction evaluation technique that can produce not only the plausible ranges of cost contingencies but also the exact amounts of contingency under DBB and DB contracts.

Originality/value

As the first of its kind, the proposed modeling framework provides agency engineers and decision-makers with tangible assessments of cost contingency coupled with experienced risks at the post-construction stage. Use of the proposed model will help them evaluate the allocation of appropriate contingency amounts. If an agency allocates a cost contingency benchmarked from similar projects on aspects of the base estimate and experienced risks, a set contingency can be defended more reliably. The main findings of this study contribute to post-construction cost contingency verification, enabling agency engineers and decision-makers to systematically evaluate set cost contingencies during the post-construction assessment stage and achieving further any enhanced level of confidence for future cost contingency plans.

Keywords

Acknowledgements

This work was supported by a Korea University Grant.

Citation

Bae, J. (2024), "Supervised learning to covering cost risk through post-construction evaluation of transportation projects by project delivery methods", Engineering, Construction and Architectural Management, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ECAM-01-2024-0136

Publisher

:

Emerald Publishing Limited

Copyright © 2024, Emerald Publishing Limited

Related articles