Nonlinear dynamic co-rotational formulation for membrane elements with in-plane drilling rotational degree of freedom
Abstract
Purpose
nonlinear dynamic analysis of triangular and quadrilateral membrane elements with in-plane drilling rotational degree of freedom.
Design/methodology/approach
The nonlinear analysis is carried out using the updated co-rotational Lagrangian description. In this purpose, in-plane co-rotational formulation that considers the in-plane drilling rotation is developed and presented for triangular and quadrilateral elements, and a tangent stiffness matrix is derived. Furthermore, a simple and effective in-plane mass matrix that takes into account the in-plane rotational inertia, which permit true representation of in-plane vibrational modes is adopted for dynamic analysis, which is carried out using the Newmark direct time integration method.
Findings
The proposed numerical tests show that the presented elements exhibit very good performances and could return true in-plane rotational vibrational modes. Also, when using a well-chosen co-rotational formulation these elements shows good results for nonlinear static and dynamic analysis.
Originality/value
Publications that describe geometrical nonlinearity of the in-plane behaviour of membrane element with rotational d.o.f are few, and often they are based on the total Lagrangian formulation or on the rate form. Also these elements, at the author knowledge, have not been extended to the nonlinear dynamic analysis. Thus, an appropriate extension of triangular and quadrilateral membrane elements with drilling rotation to nonlinear dynamic analysis is required.
Citation
Boutagouga, D. and Djeghaba, K. (2016), "Nonlinear dynamic co-rotational formulation for membrane elements with in-plane drilling rotational degree of freedom", Engineering Computations, Vol. 33 No. 3. https://doi.org/10.1108/EC-02-2015-0030
Publisher
:Emerald Group Publishing Limited
Copyright © 2016, Emerald Group Publishing Limited