To read this content please select one of the options below:

AsCDPR: a novel framework for ratings and personalized preference hotel recommendation using cross-domain and aspect-based features

Hei-Chia Wang (Institute of Information Management, National Cheng Kung University, Tainan, Taiwan) (Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan)
Army Justitia (Institute of Information Management, National Cheng Kung University, Tainan, Taiwan) (Information Systems, Universitas Airlangga Surabaya, Indonesia)
Ching-Wen Wang (Institute of Information Management, National Cheng Kung University, Tainan, Taiwan)

Data Technologies and Applications

ISSN: 2514-9288

Article publication date: 20 September 2023

Issue publication date: 15 April 2024

150

Abstract

Purpose

The explosion of data due to the sophistication of information and communication technology makes it simple for prospective tourists to learn about previous hotel guests' experiences. They prioritize the rating score when selecting a hotel. However, rating scores are less reliable for suggesting a personalized preference for each aspect, especially when they are in a limited number. This study aims to recommend ratings and personalized preference hotels using cross-domain and aspect-based features.

Design/methodology/approach

We propose an aspect-based cross-domain personalized recommendation (AsCDPR), a novel framework for rating prediction and personalized customer preference recommendations. We incorporate a cross-domain personalized approach and aspect-based features of items from the review text. We extracted aspect-based feature vectors from two domains using bidirectional long short-term memory and then mapped them by a multilayer perceptron (MLP). The cross-domain recommendation module trains MLP to analyze sentiment and predict item ratings and the polarities of the aspect based on user preferences.

Findings

Expanded by its synonyms, aspect-based features significantly improve the performance of sentiment analysis on accuracy and the F1-score matrix. With relatively low mean absolute error and root mean square error values, AsCDPR outperforms matrix factorization, collaborative matrix factorization, EMCDPR and Personalized transfer of user preferences for cross-domain recommendation. These values are 1.3657 and 1.6682, respectively.

Research limitation/implications

This study assists users in recommending hotels based on their priority preferences. Users do not need to read other people's reviews to capture the key aspects of items. This model could enhance system reliability in the hospitality industry by providing personalized recommendations.

Originality/value

This study introduces a new approach that embeds aspect-based features of items in a cross-domain personalized recommendation. AsCDPR predicts ratings and provides recommendations based on priority aspects of each user's preferences.

Keywords

Citation

Wang, H.-C., Justitia, A. and Wang, C.-W. (2024), "AsCDPR: a novel framework for ratings and personalized preference hotel recommendation using cross-domain and aspect-based features", Data Technologies and Applications, Vol. 58 No. 2, pp. 293-317. https://doi.org/10.1108/DTA-03-2023-0101

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles