Effect of flow rates on segmental baffle shell and tube heat exchanger using CuO-W nanofluids
ISSN: 1708-5284
Article publication date: 6 February 2020
Issue publication date: 19 February 2020
Abstract
Purpose
Nanofluid exhibits higher density, higher viscosity, higher thermal conductivity and reduced specific heat capacity along with improved heat transfer characteristics. It is comparatively better than conventional fluids in terms of thermo-physical properties. This paper aims to investigate experimentally the overall performance of the shell and tube heat exchanger operated under two different configurations – without baffles (STHX_1) and with baffles (STHX_2) using 0.01 Vol.% and 0.02 Vol.% of CuO-W nanofluid.
Design/methodology/approach
Two different configurations, one without baffles (STHX_1) and other with single segmental baffles (STHX_2), are chosen with all other dimensional details of shell and tube remaining same. Water is used as base fluid. CuO nanoparticle is chosen, as its thermal conductivity is higher compared to other metal oxides. A comparative study on the thermal performance of these shell and tube heat exchangers are performed by considering different Vol.% concentrations of CuO-W nanofluid and the outcome are compared with the base fluid (i.e., water). The influence of varying the mass flow rate of the tube side fluid by keeping shell side fluid mass flow rate as constant and vice versa on the thermal performance of shell and tube heat exchanger are studied.
Findings
The modified shell and tube heat exchanger with baffles (STHX_2) give an improved performance. The heat transfer coefficient improved by about 11.28 and 7.54 per cent for 0.02 and 0.01 Vol.% of CuO-W nanofluid compared to water. Overall heat transfer coefficient for STHX_2 enhanced between 118.26% to 123.06% in comparison with base fluid for 0.02 Vol.% of CuO-W nanofluid whereas, it improved between 79.20% to 87.51% for 0.01 Vol.% of CuO-W nanofluid. Similarly, the actual heat transfer enhanced between 71.79% to 77.77% and between 48.71% to 55.55% for 0.02 and 0.01 Vol.% of CuO-W nanofluid, respectively. Moreover, mass flow rates of the working fluids significantly influence the performance of the shell and tube heat exchanger.
Originality/value
Two cases are considered here. first, by varying the shell side fluid mass flow rate and keeping the tube side fluid mass flow rate as constant. Later, tube side fluid mass flow rates are varied and shell side fluid mass flow rate is kept constant. It is found that in Case 2, for both 0.01 and 0.02 Vol.% of CuO-W nanofluid, highest performance is obtained for 150 kg/h of shell side and tube side fluid flows involving STHX_2. Finally, the modified shell and tube heat exchanger with baffle arrangement gives the best performance by using 0.02 Vol.% of CuO-W nanofluid.
Keywords
Acknowledgements
The authors would like to acknowledge the anonymous reviewers for the peer review and giving suggestions to improve the quality of this paper.
Citation
Sivamani, S., M., M., Venkatesan, H. and T., M.P. (2020), "Effect of flow rates on segmental baffle shell and tube heat exchanger using CuO-W nanofluids", World Journal of Engineering, Vol. 17 No. 1, pp. 115-126. https://doi.org/10.1108/WJE-10-2019-0285
Publisher
:Emerald Publishing Limited
Copyright © 2020, Emerald Publishing Limited