To read this content please select one of the options below:

Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems

Sajad Ahmad Rather (Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India)
P. Shanthi Bala (Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India)

World Journal of Engineering

ISSN: 1708-5284

Article publication date: 6 February 2020

Issue publication date: 19 February 2020

555

Abstract

Purpose

The purpose of this paper is to investigate the performance of chaotic gravitational search algorithm (CGSA) in solving mechanical engineering design frameworks including welded beam design (WBD), compression spring design (CSD) and pressure vessel design (PVD).

Design/methodology/approach

In this study, ten chaotic maps were combined with gravitational constant to increase the exploitation power of gravitational search algorithm (GSA). Also, CGSA has been used for maintaining the adaptive capability of gravitational constant. Furthermore, chaotic maps were used for overcoming premature convergence and stagnation in local minima problems of standard GSA.

Findings

The chaotic maps have shown efficient performance for WBD and PVD problems. Further, they have depicted competitive results for CSD framework. Moreover, the experimental results indicate that CGSA shows efficient performance in terms of convergence speed, cost function minimization, design variable optimization and successful constraint handling as compared to other participating algorithms.

Research limitations/implications

The use of chaotic maps in standard GSA is a new beginning for research in GSA particularly convergence and time complexity analysis. Moreover, CGSA can be used for solving the infinite impulsive response (IIR) parameter tuning and economic load dispatch problems in electrical sciences.

Originality/value

The hybridization of chaotic maps and evolutionary algorithms for solving practical engineering problems is an emerging topic in metaheuristics. In the literature, it can be seen that researchers have used some chaotic maps such as a logistic map, Gauss map and a sinusoidal map more rigorously than other maps. However, this work uses ten different chaotic maps for engineering design optimization. In addition, non-parametric statistical test, namely, Wilcoxon rank-sum test, was carried out at 5% significance level to statistically validate the simulation results. Besides, 11 state-of-the-art metaheuristic algorithms were used for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.

Keywords

Citation

Rather, S.A. and Bala, P.S. (2020), "Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems", World Journal of Engineering, Vol. 17 No. 1, pp. 97-114. https://doi.org/10.1108/WJE-09-2019-0254

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles