To read this content please select one of the options below:

Multi-sensor fusion for underwater robot self-localization using PC/BC-DIM neural network

Umair Ali (Intelligent Systems Laboratory, Department of Electrical Engineering, University of Gujrat, Gujrat, Pakistan)
Wasif Muhammad (Intelligent Systems Laboratory, Department of Electrical Engineering, University of Gujrat, Gujrat, Pakistan)
Muhammad Jehanzed Irshad (Intelligent Systems Laboratory, Department of Electrical Engineering, University of Gujrat, Gujrat, Pakistan)
Sajjad Manzoor (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur, Pakistan)

Sensor Review

ISSN: 0260-2288

Article publication date: 5 October 2021

Issue publication date: 14 October 2021

290

Abstract

Purpose

Self-localization of an underwater robot using global positioning sensor and other radio positioning systems is not possible, as an alternative onboard sensor-based self-location estimation provides another possible solution. However, the dynamic and unstructured nature of the sea environment and highly noise effected sensory information makes the underwater robot self-localization a challenging research topic. The state-of-art multi-sensor fusion algorithms are deficient in dealing of multi-sensor data, e.g. Kalman filter cannot deal with non-Gaussian noise, while parametric filter such as Monte Carlo localization has high computational cost. An optimal fusion policy with low computational cost is an important research question for underwater robot localization.

Design/methodology/approach

In this paper, the authors proposed a novel predictive coding-biased competition/divisive input modulation (PC/BC-DIM) neural network-based multi-sensor fusion approach, which has the capability to fuse and approximate noisy sensory information in an optimal way.

Findings

Results of low mean localization error (i.e. 1.2704 m) and computation cost (i.e. 2.2 ms) show that the proposed method performs better than existing previous techniques in such dynamic and unstructured environments.

Originality/value

To the best of the authors’ knowledge, this work provides a novel multisensory fusion approach to overcome the existing problems of non-Gaussian noise removal, higher self-localization estimation accuracy and reduced computational cost.

Keywords

Acknowledgements

The authors gratefully acknowledge Dr Atta-ur-Rehman for his extremely valuable suggestions and comments that greatly improved the manuscript.

Citation

Ali, U., Muhammad, W., Irshad, M.J. and Manzoor, S. (2021), "Multi-sensor fusion for underwater robot self-localization using PC/BC-DIM neural network", Sensor Review, Vol. 41 No. 5, pp. 449-457. https://doi.org/10.1108/SR-03-2021-0104

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles