To read this content please select one of the options below:

Optimizing laser triangulation displacement sensor of 3D positioning and posture using COA Based BPNN

Yassine Selami (Department of Instrument Science and Technology, Shanghai Jiao Tong University – Minhang Campus, Shanghai, China)
Na Lv (Department of Instrument Science and Technology, Shanghai Jiao Tong University – Minhang Campus, Shanghai, China)
Wei Tao (Department of Instrument Science and Technology, Shanghai Jiao Tong University – Minhang Campus, Shanghai, China)
Hongwei Yang (Department of Instrument Science and Technology, Shanghai Jiao Tong University – Minhang Campus, Shanghai, China)
Hui Zhao (Department of Instrument Science and Technology, Shanghai Jiao Tong University – Minhang Campus, Shanghai, China)

Sensor Review

ISSN: 0260-2288

Article publication date: 20 February 2020

Issue publication date: 20 January 2020

170

Abstract

Purpose

The purpose of this paper is to propose cuckoo optimization algorithm (COA)-based back propagation neural network (BPNN) to reduce the effect of the nonlinearities presented in laser triangulation displacement sensors. The 3D positioning and posture sensor allows access to the third dimension through depth measurement; the performance of the sensor varies according to the level of nonlinearities presented in the system, which leads to inaccuracies in measurement.

Design/methodology/approach

While applying optimization approach, the mathematical model and the relationship between the key parameters in the laser triangulation ranging and the indexes of the measuring system were analyzed.

Findings

Based on the performance of the parametric optimization method, the measurement repeatability reached 0.5 µm with an STD value within 0.17 µm, an expanded uncertainty of measurement was within 5 µm, the angle error variation of the object’s rotational plane was within 0.031 degrees and nonlinearity was recorded within 0.006 per cent in a full scale. The proposed approach reduced the effect of the nonlinearity presented in the sensor. Thus, the accuracy and speed of the sensor were greatly increased. The specifications of the optimized sensor meet the requirements for high-accuracy devices and allow wide range of industrial application.

Originality/value

In this paper, COA-based BPNN is proposed for laser triangulation displacement sensor optimization, on the basis of the mathematical model, clarifying the working space and working angle on the measurement system.

Keywords

Acknowledgements

All authors gratefully acknowledge financial support from the Science and Technology Commission of Shanghai Municipality and Shanghai and National Natural Science Fund and the project numbers are 15JC1402500 and U1637108, respectively.

Citation

Selami, Y., Lv, N., Tao, W., Yang, H. and Zhao, H. (2020), "Optimizing laser triangulation displacement sensor of 3D positioning and posture using COA Based BPNN", Sensor Review, Vol. 40 No. 1, pp. 112-120. https://doi.org/10.1108/SR-03-2019-0085

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles