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Abstract

Purpose –For billing purposes, heavy-haul locomotives in Sweden are equippedwith on-board energymeters,
which can record several parameters, e.g., used energy, regenerated energy, speed and position. Since there is a
strong demand for improving energy efficiency in Sweden, data from the energymeters can be used to obtain a
better understanding of the detailed energy usage of heavy-haul trains and identify potential for future
improvements.
Design/methodology/approach – To monitor energy efficiency, the present study, therefore, develops key
performance indicators (KPIs), which can be calculated with energy meter data to reflect the energy efficiency
of heavy-haul trains in operation. Energy meter data of IORE class locomotives, hauling highly uniform
30-tonne axle load trains with 68 wagons, together with additional data sources, are analysed to identify
significant parameters for describing driver influence on energy usage.
Findings – Results show that driver behaviour varies significantly and has the single largest influence on
energy usage. Furthermore, parametric studies are performed with help of simulation to identify the influence
of different operational and rolling stock conditions, e.g., axle loads and number of wagons, on energy usage.
Originality/value – Based on the parametric studies, some operational parameters which have significant
impact on energy efficiency are found and then the KPIs are derived. In the end, some possible measures for
improving energy performance in heavy-haul operations are given.
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Paper type Research paper

1. Introduction
Heavy-haul freight trains have a lower energy usage per tonne of freight hauled than
conventional freight trains, providing a measure for increased energy efficiency of the
transport. Given the high amount of energy required for powering heavy-haul trains, any
further measures to improve energy efficiency can help to save energy. However, for freight
operators to achieve energy savings, a good understanding of the energy efficiency of the
current operations and potential for future improvements is essential.

Many scholars have contributed to predicting the energy consumption of heavy-haul
freight trains. Being a very basic model, Lindgreen and Sorenson (2005) take into account
efficiency, themost basic physical principles such as gradient resistance (in a simplified way),
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mechanical and aerodynamic resistance, but excluding curve resistance and the additional
resistance due to wind and tunnels. Later, Wang and Rakha (2017) modelled regenerative
braking efficiency as an exponential function of deceleration and find that this approach
gives lower error for energy prediction than a linear function with constant braking energy
efficiency. Bai et al. (2009) instead assume an average transmission efficiency but have
calculated the gradient and curve resistance in detail by using a mass density function. Zhou
(2022) summarise different ways to improve railway energy efficiency in China, where
different energy models of the railway system are introduced. Whether a single particle or
multi-particle model should be used is discussed in several papers that estimate freight train
energy. Lu et al. (2018) give arguments for both. They found that single particle models are
simpler to analyse but give errors especially for lines with many changes in gradient. On the
other hand, multi-particle models are complicated and have a high computational expense,
which can be of disadvantage in optimisations. Lukaszewicz (2008) states that single particle
models are often used and normally accurate enough, but for long freight trains a distributed
mass model should be used. Driver’s behaviour has also been considered by many
researchers in energy consumption simulation (Lukaszewicz, 2000; Lukaszewicz &
Andersson, 2009). Without including the driver’s behaviour, an error of 20–30% of energy
consumption is reported compared with real train runs (Lukaszewicz, 2008).

To track current energy efficiency performance, key performance indicators (KPIs) are
widely used. If chosen properly, they give good indications of current performance and help
to identify possible measures for improvement. Continuous monitoring of energy usage can
directly reflect energy efficiency of rolling stock and train service (Gonz�alez-Gil et al., 2014).
In Sweden, for billing purposes, heavy-haul locomotives are equipped with on-board energy
meters, which can record several parameters, e.g. used energy, regenerated energy, speed and
position. KPIs can thus be calculated using energymeter data, providing high-resolution data
of energy usage on rolling stock level.

Studies on KPIs for energy efficiency of railway operations are scarce and focused on
urban rail, see, e.g. Gonz�alez-Gil et al. (2015). In another paper it is stated that KPI should be
specific, measurable, assignable, realistic and time-related (Scheepmaker et al., 2020).
As pointed out by Gonz�alez-Gil et al. (2015), in order to have a good overview, the number of
KPI should be limited and so it is especially important that they excerpt solely the information
that is most relevant. It is, therefore, also a good idea to have a global efficiency (main) KPI,
which for instance could be specific energy consumption as suggested in Gonz�alez-Gil et al.
(2015). For freight train operations, especially heavy-haul, where axle loads are much higher,
the characteristics and KPIs are different from these of urban rail operations.

In this study, energy meter data for a standard iron ore train with 30 t axle load and 68
wagons, together with other data sources, is analysed with the aim of identifying significant
parameters for describing the energy efficiency of heavy-haul operations. Parametric studies
based on a simulation model of the discussed train are performed to generate additional
results. The influence of some key operational parameters on energy usage is studied and
then KPIs, which can be monitored by the on-board energy meter and from other available
sources are derived. In the end, suggestions for appropriate operational measures to increase
energy efficiency are given.

2. Methodology
Multiple parameters from several data sources are aggregated for train runs along a
predefined route. The train runs that are most similar in terms of operational conditions
(number of stops along the route and cargo load) while having the highest difference in net
energy usage are compared to assess the influence of defined driver-describing parameters
on energy efficiency.
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Moreover, a parametric study is performed to evaluate the effects of several operational
parameters on energy usage, which are hard to distinguish from running data of trains due to
varying driver behaviour. The energy usage for different operational conditions is estimated
through simulation of a heavy-haul freight train running along the given route. For this
purpose, the heavy-haul iron ore trains, from which data for the running data analysis is
sourced, is modelled in the in-house software Simulation of Train Energy Usage (STEC)
(€Oberg, J., v2.10.b), using a multi-particle approach for gradient and curve resistance.

The train and track models are validated on two different, shorter stretches of track of
around 11 km length, using energy usage data from energy meters to validate agreement of
measured and simulated energy usage. From the combined results of the running data
analysis and parametric study, KPIs are derived for the most significant parameters of
interest, considering availability of required data with sufficient resolution from the energy
meters or other available sources to calculate the KPIs.

2.1 Setup
The train used in this paper is a typical heavy-haul iron ore train as operated by the company
LKAB in northern Sweden and Norway, consisting of two electric IORE class locomotives
featuring a regenerative dynamic brake and 68 Fanoo class ore wagons. These trains usually
operate close to the limit of 30 t axle load and always with two locomotives and 68 wagons,
providing a uniform rolling stock consist and hence a lot of comparable data for analysis.
Table 1 presents values of some technical parameters for the rolling stock, which are also
used in the simulations.

When it comes to the predefined route for all analysis, the stretch from Kiruna in Sweden
to Narvik in Norway is chosen. Figure 1 shows the altitude profile. Apart from being single-
track, this route has a challenging topography with gradients up to 1.7% and long steep
downhill sections, which amplifies the effect of different driving styles on energy usage.
Furthermore, this route is frequented the most by LKAB’s iron ore trains, providing the
largest set of suitable running data for analysis.

2.2 Data sources
Several data sources have been used to gather running data for the analysis. Firstly, energy
meter data has been gathered. The energy meters installed on-board sample several
parameters every 5 min together with the accumulated energy usage. The data are saved to
internal memory before the data are uploaded to servers using mobile network, which can be

Parameter 2x IORE 1x Fanoo Unit

Maximum speed 60 60 km/h
Tare mass 360 21.6 t
Payload 0 93.5 t
Length 45.8 10.3 m
Number of axles 12 4 –
Rotating mass contribution 52 1.64 t
Adhesive weight 360 0 t
Maximum power (cont.) 10800 – kW
Tractive effort 1200 – kN
Dynamic braking effort 750 – kN
Drive chain efficiency 88.9 – %

Source(s): Authors’ own work

Table 1.
Technical parameter

values for rolling stock
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accessed in an online database. Parameters which are used in this study are total energy
usage, total energy regeneration, speed and GPS position.

Given the parameters of energy meter data, further data are manually downloaded from
the train event recorder of four pairs of locomotives. Parameters available from this data
source that have been used are speed, traction force, regenerative braking force and brake
main pipe pressure. Input signals are sampled and saved to the internal memory of the
recorder every time a change in speed is detected; however data that have been downloaded is
from the long-term memory with a lower resolution than the short-term memory.

Cargo load of each train run is extracted from LKAB’s own database, since the trains
always pass a scale before departure, ensuring no wagon is overloaded. The reliability of
these data is therefore high.

The simulation tool STEC requires inputs of parameters for both train and track in
addition to the locations for stops and dwell time. Technical documentation has mainly been
studied to obtain required technical parameters for the train. However, average auxiliary
power is estimated based on high-resolution instantaneous power data from the data bus of
several pairs of locomotives.

High-resolution track data from the Swedish infrastructure owner, Trafikverket, are used
to define horizontal and vertical track alignments. These data are input into the simulation
tool at a resolution of 10 m, which is equal to the step length used for the calculation of the
multi-particle model. For the Norwegian part of the route, older data provided by LKAB are
used, though no significant changes have happened to the track alignments over time and
altitude checks are performed to ensure accuracy.

2.3 Parameters of interest
Based on a literature review, three main areas which can explain variations in energy
efficiency have been identified: driver behaviour, operational conditions and rolling stock
performance. For each area, parameters are defined that can be regarded as the most
interesting for energy efficiency.

Five driver-describing parameters, depending on the behaviour of the driver, are analysed
in the running data analysis. They have been chosen to cover the driver behaviour in the four
possible states of the train in motion: acceleration, deceleration, coasting and cruising.

Figure 1.
Altitude profile for
route from Kiruna to
Narvik
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(1) Powering ratio: the amount of power used during traction in relation to the rated
output power, i.e., a measure of the aggressiveness of accelerations

(2) Braking ratio: the amount of braking force used of the maximum available braking
force (the combination of electric and mechanical brakes), i.e., a measure of the
aggressiveness of decelerations

(3) Ratio of mechanical and electric braking: it refers to how much of the total braking
during the trip is done using the electric brakes, i.e., a measure of how much of the
energy during braking is recovered

(4) Amount of coasting: the fraction of the total distance covered by the train during the
trip that is spent coasting, i.e., a measure of distance the train covers in the most
energy-efficient state

(5) Maximum speed: the maximum speed the driver decides to drive at a measure of
energy lost due to aerodynamic resistance

Three operational parameters especially relevant for heavy-haul trains, describing conditions
beyond the control of the driver, are analysed as part of the parametric study:

(1) Number of stops: the number of times the trainmust stop along the route, for instance,
due to train crossings, a measure of the railway traffic situation

(2) Load factor: the axle loads thewagons operate at, i.e., ameasure of howwell the train’s
maximum hauling capacity is utilised

(3) Number of wagons: how close the number of wagons is to the limit defined by the
infrastructure, i.e., a measure of how well the train’s maximum potential hauling
capacity is utilised

Finally, one parameter for the parametric study is defined to describe the performance of the
rolling stock from an energy efficiency point of view:

(1) Efficiency of drive chain: a measure of internal losses at the locomotives

3. Results and discussion
3.1 Running data analysis
For the running data analysis, data from train runswithout any stops between start in Kiruna
and end in Narvik have been selected, since this eliminates the influence of the number of
stops on energy usage. A total of ten train runs fulfilled the criteria and of these the two train
runs with the least difference in cargo load and highest difference in net energy usage are
compared.

Table 2 presents key data for the two train runs. As can be seen, the difference in cargo
load is only 6 t, meaning the train runs are performed under very comparable conditions
in terms of operational circumstances. Furthermore, the same, unique locomotive has
been used in both train runs, so the results of the two runs are comparable. This means
that the driving behaviour is responsible for most of the significant difference in
energy usage.

As a basis for analysis of powering ratio, coasting and braking ratio, Figure 2 has been
used, which shows the total traction/braking force at the wheels of all powered axles. It is
clearly visible that Train 2 coasts significantly more, so the amount of coasting has
explanatory power for energy efficiency and is suitable as KPI, which is expected since
coasting is the most energy-efficient state of motion.
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The powering ratio is often similar when the more energy-efficient driver of Train 2,
hereafter referred to as the “efficient” driver, applies traction compared to the less energy-
efficient (“inefficient”) driver’s ratio. But because Train 2 coasts a lot more, on average the
powering ratio gets lower for the “efficient” driver. This confirms the explanatory power of
powering ratio, though a KPI should be based on the average powering ratio.

The braking ratio for the electric brake is also often lower for the “efficient” driver because
the “inefficient” driver applies higher braking forces for short periods of time. Though, when
the “efficient” driver applies constant electric brake forces, it is often higher than for the
“inefficient” driver. The difference in average braking ratio is thus less obvious than for the
amount of coasting and powering ratio, but still has explanatory power as KPI when taking
themechanical brakes into account, for which the brake pipe pressure can be seen in Figure 3.
For a 0.5 bar change in brake pipe pressure from 5 bar, the 68 ore wagons generate a total
mechanical brake force of 1420 kN in addition to the electric brake force of the locomotive.

With Figure 3, the ratio of mechanical and electric braking is evaluated. While the
“inefficient” (less regenerating) driver uses a higher electric braking force at a higher
frequency, the electric braking force is often only applied for a brief time. The “efficient”
driver uses a high electric braking force too but uses it constantly for extended periods of
time. Thus, in total the electric brake energy recovered gets much larger since the power in
combination with the applied time matter for regenerated energy. Interesting to note is that
the “efficient” driver closely follows a braking strategy on the long steep downhill sections
where constant electric braking is applied, and the speed is adjusted via the mechanical

Parameter Train 1 Train 2 Difference

Total gross energy 9994 kWh 8144 kWh 1850 kWh
Total regenerated energy 2936 kWh 5112 kWh �2176 kWh
Total net energy 7058 kWh 3032 kWh 4026 kWh
Total run time 12591 s 12960s �369 s
Total distance 168.7 km 168.0 km 0.7 km
Cargo load 6489 t 6483 t 6 t

Source(s): Authors’ own work

Table 2.
Key data for compared
train runs

Figure 2.
Comparison of force at
wheels of locomotive
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brakes to keep it below the speed limit. This has been reported to be the most energy-efficient
driving strategy on long steep downhill sections (Lin et al., 2017).

The instances where mechanical brakes are used match to a high degree for both runs. So,
in total, even though there would probably be a difference in how much energy is braked
away mechanically in total for each train, the share of the braking performed with electric
brakes is clearlymuch higher for Train 2. Overall, the ratio of mechanical and electric braking
can be concluded to be significant for describing howmuch energy is regenerated in total and
could be useful as KPI.

Finally, the parameter of maximum speed is analysed by comparing the speed profiles of
Trains 1 and 2, see Figure 4. The speed for the “efficient” driver is often actually higher than
for the “inefficient” driver. A high maximum speed can be of advantage if it means that more
of the potential energy on downhill gradients can be converted directly into kinetic energy.
This proves that the maximum speed has a low explanatory power as KPI for energy
efficiency, given that a high maximum speed is not always negative for energy efficiency.

Figure 3.
Comparison of electric
brake force and brake

pipe pressure
difference versus
nominal (5 bar)

Figure 4.
Comparison of speed

profiles
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Further, it can be seen in Figure 4 that the “efficient” driver at two instances is close to coming
to a stop, probably while waiting for extended movement authority. If these speed reductions
would not happen, the difference in net energy would be even bigger.

3.2 Parametric study
When it comes to operational parameters that the driver has no influence over, the number of
stops is analysed first. Adding stops at one meeting station along the route at a time with a
line speed limit of 48 km/h, it could be seen that additional energy usage of 192.7 kWh is
required for each stop on average. Note that this value depends on the start-speed and driving
behaviour when it comes to the deceleration before and acceleration afterwards. Therefore, it
only applies to the specific start-speed and extremely aggressive driving style in the
simulation. In reality, a lower value is expected.

The outgoing gradient is clearly more important than the incoming gradient for the
additional energy required, which is expected given that it is here where the kinetic energy of
the train has to be built up again. If reasonable run times are to be achieved, the trainwill have
to power to some degree even for acceleration on steep downhills after the stop, making the
number of stops significant as the KPI for describing energy usage.

Next, the load factor is investigated which does not result in any saving of gross energy
usage, but rather specific energy usage which is used instead for interpreting the results.
To be able and simulate varying axle loads, the running resistance must be parametrised in
formulas.

For describing running resistance, the simulation software STEC relies on the Davis
equation. The coefficients of this equation are based on data received from the provider of a
Driver Advisory System (DAS), which has been used on the iron ore trains (Yang et al., 2013).
However, only values for a train with 68 wagons and a 95% cargo load factor, equal to 28.77
tonnes axle load, respectively, an empty train have been provided. To allow for a variation of
axle load and train length in the parametric study, the A-coefficient is approximated by linear
interpolation of the two given values and adjusted for any change in the number of axles for
the train, see Equation (1).

A≈

12þ nwagons$
4

12þ 68$4
$ð15354:1þ 1191:7$QtotÞ (1)

where nwagons is the number of wagons and Qtot the average axle load for the train,
considering that the locomotives always have an axle load of 30 t. The equation is structured
according to empirical equations which have been established for the similar MV2000 class
ore wagon via full scale tests (Lukaszewicz, 2009).

For an approximation of the B-coefficient the equation from Lukaszewicz (2009) is used
due to the good agreement with the values from the DAS, see Equation (2).

B≈ 0:2$Lt (2)

where Lt is the total train length. Finally, for approximation of the C-coefficient, the formula
from Lukaszewicz (2009) is used, adjusted for the discrepancy from values of the DAS by a
scaling factor, see Equation (3).

C ≈ 1:135$ð5:4þ 0:114$LtÞ (3)

Due to low speeds, tunnel resistance is expected to have a low influence on energy usage of
the train and is thus disregarded in the simulations. Validations show that the simulated
running resistance is quite accurate.
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Only the cargo load and A-coefficient need to be changed to vary the axle load in the
simulations. Figure 5 shows how the specific energy usage changes for typical axle loads
from 27.5 t to 32.5 t, where axle loads above 30 t represent a planned future increase of the
limit for the iron ore trains. The axle load is expressed as the corresponding cargo load for
comparability reasons. Specific energy usage is expressed as kWh per net-tonne-km since
that is what a transport company cares about in the context of energy usage. The results
indicate that it is advantageous to increase the axle load, but the exact savings shown here
only apply to the very aggressive driving style in the simulation.

However, this raises the question of howmuch energy can be saved for a more reasonable
driving behaviour. For this purpose, the planned increase in axle load for the iron ore trains
from 30 t to 32.5 t is considered. Several simulations are performed where the driving
behaviour is manipulated to gain data points for the change in specific energy for several
cases with different driving efficiency performances. Energy savings for drivers with
8,000 kWh gross energy and 10,000 kWh gross energy on the route fromKiruna to Narvik are
predicted. For a very energy-efficient driving (based on energy meter data) at 8,000 kWh,
335.6 kWh can be savedwhen operating at 32.5 t axle load over the distance of 164.73 km. For
inefficient drivingwith 10,000 kWh, a little bit more can be saved at 357.2 kWh. Though these
savings are just estimations, they show that the load factor is significant for describing
energy usage and should be of interest to track as KPI.

Specific energy usage can also be reduced by adding additional ore wagons, which is
analysed by looking at the number of wagons. Here all coefficients of the Davis equation need
to be recalculated (using Equations (1)–(3)) together with the multi-particle track input, cargo
load, train tare mass and mass contribution from rotational masses, leading to higher
uncertainty in the results than for the axle load analysis due tomore changes to parameters in
relation to the validated standard case (30 t axle load and 68 wagons).

In Figure 5, the change in specific energy usage for different numbers of wagons in the
range from 62 to 74 is shown and compared with an adjusted axle load for a standard train
with 68 wagons. Though an increased number of wagons reduces specific energy usage, it
can be seen that the effect of an increased train length on specific energy usage is lower than
for an increased axle load. Even when considering the higher uncertainty of results for the

Figure 5.
Comparison of savings

in specific energy
usage for higher load
factor and number of

wagons
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number of wagons, an increase in axle load is concluded to be superior from an energy
efficiency point of view, even though the number of wagons still is significant for describing
energy usage and thus of interest to track as KPI.

Lastly, the drive chain efficiency has been investigated as part of the parametric study,
which is the only rolling stock related parameter. The traction and regenerative braking
efficiency, which are assumed to be the same, are varied and the resulting changes in energy
usage are shown in Figure 6.

Looking at the numbers, the influence of a changed efficiency is largest for the net energy
usage, since a reduced efficiency means both a higher gross energy intake and lower amount
of regenerated energy. For a change of efficiency by 1% compared to the default efficiency,
the total net energy changes by around 250 kWh. Keeping in mind that gross energy is lower
for a real train run compared to the simulated case with a very aggressive driving style, the
change in net energy due to altered drive chain efficiency is expected to be much lower.

It can be concluded that drive chain efficiency can be significant for describing net energy
usage, but the suitability as KPI depends on how high variations of the efficiency from the
nominal value can be reasonably expected. High efficiency drops down to 70%wouldmean a
major difference, though a locomotive with such a severe defect would probably not be used
in regular operations.

3.3 Key performance indicators
Based on the parameters found to be significant in the data analysis and parametric study,
KPIs are developed. In Figure 7 they are presented, and the framing colour indicates the
availability of data from the energy meters used on-board the locomotives. Blue indicates
additional data sources are required and yellow that higher energy meter data resolution is
required (the Swedish standard as of today is one data sample every 5minutes). Further KPIs
than the defined ones could also be added in the future if new data gets available or specific
energy-saving measures should be tracked in more detail than the defined KPIs allow for.

For measuring overall system performance, a global KPI suitable for heavy-haul freight
trains is the Specific energy usagemeasured per net-tonne-km. This requires total net energy
usage and cargo loads as an additional data source, though this is usually available to heavy-
haul operators.

Then there are three KPIs defined for driver performance, of which the first is Average
traction power. As running data analysis has shown, even the more energy-efficient driver

Figure 6.
Results for drive chain
efficiency analysis

RS
2,2

252



uses high powering ratios sometimes, but the average powering ratio is lower due to less
aggressive accelerations and more coasting. High-resolution power data is needed for
calculation of this and the next parameter.

The KPI Amount of total distance coasted is directly derived from the corresponding
parameter of the running data analysis with the clearest influence on gross energy usage.
Defining a certain range within which the power must fall, it can be known when the
driver coasts. The distance can then be estimated via the GPS position. For this KPI to
work, it relies on drivers being trained to not use coasting extensively where it is not
appropriate.

While the braking ratio has some explanatory power, it cannot be distinguished whether
measured electric brake force is only applied at the locomotive or results from a brake pipe
pressure drop and related mechanical braking of the wagons. It is therefore not possible to
track the braking ratio from energy meter data, even though it would be an interesting KPI.
Note that differences in local powering ratio and braking ratio along the route often are
related to that the “efficient” driver coasts more. In other words, the powering and braking
ratio can be explained by the amount of coasting to some extent.

Whenever braking is required, the regenerative brake should be prioritised over the
mechanical one. TheKPIRatio of regenerated energy of gross energy is thus introduced, which
tracks this and penalises excessive use of the regenerative brake at the cost of increased gross
energy. It is calculated by dividing the total regenerated energy by the total gross energy for a
concluded trip.

Moving on to KPIs related to operations, the Number of stops is defined. This can be
tracked using the GPS position and recorded speed from the energy meters at a higher
resolution. The exact amount of energy that an additional stop adds to the gross energy

Figure 7.
Structure for energy
monitoring system

with KPIs
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usage not only depends on the driving behaviour, but the topography of the stops.
Performance indicators could hence be introduced that track how frequently each meeting
station is used for stops.

For a long-term strategy of reducing the specific energy usage for heavy-haul freight
trains, the KPIs Load factor and Number of wagons should be tracked, especially the load
factor. However, in order to use these as KPIs, information from a database that includes
cargo load, and the number of wagons is required. Though such databases usually exist for
heavy-haul operators.

Finally, for the rolling stock, two KPIs are defined. The first isAverage stabling power and
can be calculated from power data of the energymeters. It is intended to follow up on possible
efficiency improvements of the stabling mode of locomotives.

As discussed earlier, the usefulness of Drive chain efficiency as KPI depends on the
variation of efficiency that can be expected. Due to that power at the wheels is not available
from energy meter data, efficiency cannot be calculated and is thus marked as dashed.
Instead, it could be evaluated by regression analysis with variables for each locomotive to
detect deviations from expected performance, though this requires a huge amount of
aggregated data from an established monitoring system.

3.4 Suggestions for energy savings
While working with the data analysis and parametric study, several potential operational
measures to increase energy efficiency were identified, applicable to heavy-haul freight train
operators.

As the results indicate, operators should in the first-place focus on increasing the axle load
before increasing train length to reduce specific energy usage, but both help to increase
energy efficiency.

Infrastructure limitations should be removed to allow for the application of regenerative
braking force on long downhill sections as much as possible with the mechanical brakes only
being used for slight speed adjustments.

To reduce the time lost by applying eco-driving strategies such as coasting, train
crossings should be planned to themeeting stations with the most favourable topography for
faster acceleration afterwards, which also saves energy.

In the running data analysis, a wide variety of driving styles could be observed with huge
differences in net energy usage. Systematic driver training on eco-driving is, therefore,
particularly important. To give drivers a better understanding of where coasting and
braking are appropriate with regards to the local running resistance of very long and heavy
trains, support tools are needed. This could be wayside signboards, a guidance document or
a DAS. With an established energy monitoring system, the effect of different driving styles
on energy usage can be visualised, which can help motivate drivers to apply eco-driving
strategies.

The stabling mode of locomotives has potential when it comes to optimising comfort
functions.

4. Conclusion
This work has taken heavy-haul iron ore trains in Sweden and studied energy data recorded
by on-board energy meter and from other data sources. Based on analysis of the recorded
energy data and some simulation results, parametric studies on the influence of some
operational conditions have be conducted.

The work has identified KPIs to reflect the energy performance of the heavy-haul trains.
Through this study, it is shown that driver behaviour varies significantly and has the largest
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influence on energy usage. Operational conditions have also significant impact on energy
usage. Through parametric study, it is found that both increased axle load and increased
train length can help to improve the energy performance in the operation of the heavy-haul
trains, but the increased axle load is superior to the increased train length.

Based on the identified potentials to improve the energy efficiency of heavy-haul freight
trains, it is identified that it is necessary for train operators to have a good understanding of
the current energy efficiency performance of both their drivers and operations in general.
In this study, the use of an energy monitoring system is shown to be a useful tool for them
to work with, to implement and to interpret the effect of saving measures in a
structured way.

Furthermore, KPIs that are important to describe energy usage and can be tracked by the
available on-board energy meter have been defined. To further improve energy efficiency in
train operation, additional sources of information and accurate measurement data with
higher-than-today resolution are expected. Therefore, this study has laid a foundation for the
development of such an energy monitoring system that can be used to track and improve
energy efficiency of freight trains over time.
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