
Continuous prediction method
of earthquake early warning

magnitude for high-speed railway
based on support vector machine

Jindong Song, Jingbao Zhu and Shanyou Li
Key Laboratory of Earthquake Engineering and Engineering Vibration,
Institute of Engineering Mechanics, China Earthquake Administration,

Harbin, China and
Key Laboratory of Earthquake Disaster Mitigation,
Ministry of Emergency Management, Harbin, China

Abstract

Purpose –Using the strongmotion data ofK-net in Japan, the continuousmagnitude predictionmethod based
on support vector machine (SVM) was studied.
Design/methodology/approach – In the range of 0.5–10.0 s after the P-wave arrival, the prediction time
windowwas established at an interval of 0.5 s. 12 P-wave characteristic parameters were selected as the model
input parameters to construct the earthquake early warning (EEW) magnitude prediction model (SVM-HRM)
for high-speed railway based on SVM.
Findings – The magnitude prediction results of the SVM-HRM model were compared with the traditional
magnitude prediction model and the high-speed railway EEW current norm. Results show that at the 3.0 s time
window, themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditional τc
method and Pd method. The overestimation of small earthquakes is obviously improved, and the construction of
the model is not affected by epicenter distance, so it has generalization performance. For earthquake events with
themagnitude range of 3–5, the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the
arrival ofP-wave, which is better than the first alarm realization rate norm required by “TheTestMethod of EEW
andMonitoring System forHigh-SpeedRailway.”For earthquake eventswithmagnitudes ranging from3 to 5, 5 to
7 and 7 to 8, the single station realization rate of the SVM-HRM model is at 0.5 s, 1.5 s and 0.5 s after the P-wave
arrival, respectively, which is better than the realization rate norm of multiple stations.
Originality/value – At the latest, 1.5 s after the P-wave arrival, the SVM-HRM model can issue the first
earthquake alarm that meets the norm of magnitude prediction realization rate, which meets the accuracy and
continuity requirements of high-speed railway EEW magnitude prediction.
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1. Introduction
Earthquake is a sudden natural disaster that is extremely harmful to railway traffic safety.
Even for an earthquake of small magnitude, its impact on subgrade, track and bridge may
cause a grave accident that can endanger the life safety of passengers (Guo, 2016; Sun, Wang,
Dai, Mu, & Liu, 2007; Wang, Dai, Xi, & Wei, 2018; Yang, 2018). Earthquake early warning
system of high-speed railway is one of the effective means to reduce heavy losses caused by
earthquake. If an alarm or emergency treatment can be implemented for high-speed railway a
few tens or even seconds in advance before the destructive vibration of earthquake occurs, the
probability of life and property losses of passengers can be significantly reduced (Song, 2013).
With the rapid development of high-speed railway in China, it is extremely urgent to build an
earthquake early warning system for high-speed railway and improve the earthquake early
warning capacity. Meanwhile, relevant research will also provide supportive reference for the
design and construction of Sichuan-Tibet Railway crossing multiple seismic fault zones.

Magnitude prediction is an important link in earthquake early warning of high-speed
railway. All the release of earthquake early warning information, the judgment of earthquake-
affected range and the determination of emergency train control range depend on the results of
magnitude prediction. For magnitude prediction, the linear proportional relation between the
initial characteristic parameters of P-wave and magnitude is usually used, and a model for
predictingmagnitude is established based on this proportional relation. In the predictionmodel,
the adopted characteristic parameters are mainly divided into two categories, namely, the
periodic parameters (Huang, Lin,&Wu, 2015; Kanamori, 2005; Li&Zhang, 2018;Ma, 2008; Ziv,
2014) and the amplitude parameters (Wu& Zhao, 2006; Wang & Zhao, 2017; Zollo, Lancieri, &
Nielsen, 2006). The commonly used magnitude prediction models based on the two types of
parameters are τc method (Kanamori, 2005) and Pd method (Wu & Zhao, 2006).

In the earthquake early warning system based on dense network layout of earthquake
monitoring station, the magnitude estimation can be carried out by means of weighted
average or co-processing ofmulti-station information. Different from the earthquake industry,
due to the linear characteristics of railway, the seismic monitoring stations of high-speed
railway can only be arranged in a sparse and linear manner along the railway. Due to the
limitation of the number and distribution of stations, the earthquake early warning of high-
speed railway can only be subject to a single magnitude estimation mode, so it is necessary to
establish a magnitude prediction model with higher accuracy.

For the earthquake early warning of existing high-speed railways, the fixed time window of
3.0 s after the earthquake P-wave arrival is usually used for magnitude prediction, but the
commonly used magnitude prediction models, namely τc method and Pd method, only use the
single parameter characteristics at the initial stage of earthquake wave, resulting in low
generalization capacity of prediction model, great discreteness of prediction results, obvious
overestimation of small earthquake and underestimation of large earthquake and the need to
screen epicentral distance and signal-to-noise ratio when the linear proportional relation between
characteristic parameters andmagnitude is being established.With the rapid development of big
data analysis technology, the application of machine learning method in the field of earthquake
early warning has been gradually expanded. Some scholars and experts have applied machine
learningmethod to the research of earthquake earlywarningmagnitude prediction. For example,
Ma (2008) has established the relationship between multiple parameters and magnitude
based on artificial neural network, and Reddy and Nair (2013) have established the relationship
between wavelet coefficient andmagnitude with support vector machine (SVM), which provides
a feasible reference formagnitude predictionwithmulti-parameter input andartificial intelligence
methods.

In order to send accurate earthquake early warning and alarm as early as possible, meet the
constantly updating requirements of earthquake early warning alarm for high-speed railway
with the change of time and achieve the goal of “improving the accuracy ofmagnitude prediction
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within 3.0 s and increasing the continuity of magnitude prediction after 3.0 s,” this paper selects
the range of 0.5–10.0 s after the P-wave arrival and establishes a prediction time window at an
interval of 0.5 s. Based on the classical SVMmethod in the field of artificial intelligence machine
learning, 12 P-wave characteristic parameters in total, including such 4 categories as amplitude
parameter, periodic parameter, energy parameter and derivative parameter, are taken as the
input parameters of SVM to construct the SVM-based high-speed railway magnitude prediction
model (SVM-HRM).The magnitude prediction results in 3.0 s time window are compared with τc
method and Pd method, respectively. Moreover, according to relevant provisions of The Test
Method of EEW and Monitoring System for High-Speed Railway in force (China Railway
Corporation, 2018), the statistical realization rate of magnitude prediction is compared with the
realization rate norm, aiming at providing reference for the construction and improvement of
high-speed railway earthquake early warning system in China.

2. Data and processing
Machine learning algorithm needs to be based on big data statistics. The data recorded by
China’s existing high-speed railway earthquake monitoring station is limited, while the
strong earthquake observation station of the same type as the former is adopted for Japan’s
K-net strong earthquake observation network, and a large number of high-quality strong
earthquake data have been recorded. Therefore, this paper mainly selects the data of Japan’s
K-net strong earthquake observation network (National Research Institute for Earth Science
and Disaster Resilience (NIED), 2018) and the strong motion data based on the following
principles (Song, Jiao, Li, & Hou, 2018).

(1) Origin time of earthquake: October 1, 2007–September 1, 2017.

(2) Seismogenic region: Japan islands and surrounding waters.

(3) Focal depth: within 10 km.

(4) Earthquake magnitude: ranging from 3 to 8.

(5) Epicenter distance: not screened.

The selected data were processed as follows.

(1) The methods proposed by Ma, Jin, Li, Chen, Liao, & Wei (2013) and Wang and Zhao
(2016) were adopted to automatically detect the P-wave arrival and manually check
the P-wave arrival based on the acceleration data.

(2) The acceleration data were integrated once to get velocity record, and velocity record
was integrated once to obtain the displacement record. The integrated records were
filtered by 0.075 Hz Butterworth high-pass filter to eliminate the low-frequency drift
caused by the integration.

(3) Considering the numerical distortion caused by the great change of characteristic
parameter values and the improvement of training efficiency of the model, the
characteristic parameters were calculated at an interval of 0.5 s within the time range
of 0.5–10.0 s after the P-wave arrival. The data were normalized in turn, and the
normalization method could be expressed as follows

bg ¼
x� xmaxþxmin

2
xmax�xmin

2

(1)

In which, −1≤
x−

xmaxþxmin
2

xmax − xmin
2

≤ 1
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Wherebg is thenormalized result of each characteristic parameter;x is thedata corresponding
to each characteristic parameter; xmax and xmin are the maximum and minimum values of
corresponding P-wave characteristic parameters, respectively.

After processing, a total of 1,837 earthquakes were screened out, with 19,263 groups and
57,789 pieces of strong motion records, and 922 stations with strong motion data were
recorded. The distribution of epicenters and recording stations obtained by screening is
shown in Figure 1. In the Figure, the red hollow circles represent the position of epicenter, and
the diameter of circle is directly proportional to the magnitude; green triangles represent
stations where data are recorded.

The strong motion data obtained by screening were randomly divided into two groups
that were not repeated, namely training data set and test data set, in which the training data
set accounted for 80% of all data, with a total of 15,410 groups and 46,230 pieces of data; test
data set accounted for 20% of all data, with 3,853 groups and 11,559 pieces of data. The
relationship between magnitude, epicentral distance and number of records of screened data
is shown in Figure 2, in which green dots represent the training data sets for establishing

Figure 1.
Distribution of selected
epicenters of Japan
earthquakes and K-net
stations

Figure 2.
Relationship between
magnitude and
epicentral distance and
number of records
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SVM-HRM prediction model, and red dots represent test data sets for testing SVM-HRM
prediction model.

3. Model characteristic parameters
High-speed railway earthquake early warning can only be subject to the form of single
magnitude estimation, which requires higher accuracy, so it is necessary to integrate multiple
parameters when analyzing the magnitude estimation results. In this paper, the parameters
were set based on the purpose of obtaining the optimal prediction results, and 12
characteristic parameters including such four categories as amplitude parameter, periodic
parameter, energy parameter and derivative parameter were selected as the input parameters
of SVM-HRM prediction model, in which the amplitude parameter, energy parameter and
derivative parameter were normalized and uniformly corrected to the reference focal distance
of 10 km (Peng, Yang, Xue, Chen, & Zhu, 2013; Yamada, Heaton, &Beck, 2007; Zollo, Lancieri,
& Nielsen, 2006). Each characteristic parameter is defined as follows.

3.1 Amplitude parameter
It includes peak displacement Pd (Wu & Zhao, 2006), peak velocity Pv and peak acceleration
Pa, and the calculation formulas are as follows

Pd ¼ max
0≤t≤τ0

jsðtÞj (2)

Pv ¼ max
0≤t≤τ0

jvðtÞj (3)

Pa ¼ max
0≤t≤τ0

jaðtÞj (4)

Where 0 is the arrival time of P-wave; τ0 is the time window length after the P-wave arrival;
s(t) is the vertical displacement time history; v(t) is the vertical velocity time history; a(t) is the
vertical acceleration time history.

3.2 Periodic parameter
It includes characteristic period τc (Kanamori, 2005), peak ratio Tva (Ma, 2008) and structural
parameter PP (Huang, Lin, & Wu, 2015). The calculation formulas are as follows

τc ¼ 2π
r

(5)

In which, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR τ0

0
v2ðtÞdtR τ0

0
s2ðtÞdt

s

Where r is the intermediate variable obtained according to Parseval’s theorem.

Tva ¼ 2π
Pv

Pa

(6)

PP ¼ τcPd (7)

3.3 Energy parameter
It includes velocity square integral IV2 (Festa, Zollo, & Lancieri, 2008), cumulative absolute
velocity CAV (Reed & Kassawara, 1990; Song, 2013) and cumulative energy change rate DI

(Nakamura, 2003). The calculation formulas are as follows
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IV2 ¼
Z τ0

0

v2ðtÞdt (8)

CAV ¼
Z τ0

0

ja3ðtÞjdt (9)

DI ¼ max
0≤t≤τ0

logjaðtÞvðtÞj (10)

Where a3(t) is the acceleration synthesized in three components.

3.4 Derivative parameter
It includes vertical cumulative absolute displacement Cad, vertical cumulative absolute
velocity Cav and vertical cumulative absolute acceleration Caa. The calculation formulas are
as follows

cad ¼ sumðjsðtÞjÞ; 0≤ t ≤ τ0 (11)

cav ¼ sumðjvðtÞjÞ; 0≤ t ≤ τ0 (12)

caa ¼ sumðjaðtÞjÞ; 0≤ t ≤ τ0 (13)

4. Prediction model algorithm
SVM is a machine learning method based on statistical learning in the field of artificial
intelligence, which can use multiple parameters for mode classification and nonlinear
regression analysis (Saunders, Stitson,Weston, Holloway, Bottou, Scholkopf, & Smola, 2002).
In this paper, the training data set obtained from the above screening is used to establish the
SVM model algorithm based on the obtained fitting function. The key of the algorithm is to
establish Gaussian kernel parameters and training parameters.

4.1 Support vector machine algorithm
Definition of parameters: f(X) is the predicted magnitude; W is the weight vector of each
characteristic parameter; X is the vector composed of characteristic parameters; b is the
intercept; n is the number of training set data, and i is the ith data; yi is the magnitude
corresponding to the characteristic parameter; E is the tolerance error. The linear regression
function f (X)5WT ·Xþ b is used to fit 12 parameters in 4 categories calculated based on
the above training data set.

Assuming that after fitting, all sample data can be expressed by linear function number
f(X) in the range of [�E, E] (Li, 2011), and its mathematical expression is��W T$X i þ b� yi

��≤E; i ¼ 1; 2; . . . ; n (14)

On this basis, the SVM model is established through the following steps.
4.1.1 Problem transformation. Optimize the distance between data points and linear

regression functions, and transform the problem of calculating distance into an extremum
problem to obtain

d ¼
�����W

T$X i þ b� yi

kW k

����� (15)

minW ;b ¼ 1

2
kW k2 (16)

Where kW k is the module of the weight vector.
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4.1.2 Introduction of penalty parameters. Different from the least square fitting method,
the SVM algorithm allows a certain range of fitting error, so the penalty parameter C can be
introduced to indicate the penalty degree of the sample when the allowable error is exceeded,
and the objective function (extremum calculation formula) of Formula (16) is transformed into

minW ;S ¼ 1

2
kW k2 þ C

Xn
i¼1

�
Si þ S *

i

�
(17)

In which,

W T$X i þ b� yi ≤E þ Si

yi �
�
W T$X i þ b

�
≤E þ S *

i

Si; S
*
i ≥ 0 i ¼ 1; 2; . . . ; n

Si; S
*
i ¼

(
yi �

�
W T$X i þ b

� ��yi � �W T$X i þ b
��� > E

0
��yi � �W T$X i þ b

���≤E

Where Si, S*i are slack variables, which are also recorded as loss functions, that is, training
errors on the upper and lower sides of the regression function.

The relationship between linear regression function and loss function of SVM is
shown in Figure 3. The solid line in the figure represents the linear regression function
f (X)5WT $Xþ b, and the dashed line range [�E,E] is called the tolerance range, representing
the hyperplane of the SVM. If the error of sample points (hollow circles) fallingwithin the dashed
lines is negligible, the sample points (red solid circles) falling on these two dashed lines are
recorded as support vectors; the sample points (hollow circles) falling outside the range of
dashed line, that is, exceeding the range of [�E, E], can be recorded as loss function S.

4.1.3 Transformation of objective function. In order to solve the extremum problem in step
2, the above objective function is transformed into Lagrangian function, so as to solve the
constrained extremum problem. Thus, Formula (17) can be transformed into

L
�
W ; b; S; S * ; α; β; γ

�¼ 1

2
kW k2þC

Xn
i¼1

�
SiþS *

i

�þXn
i¼1

αiðSiþE�yiþ f ðX iÞÞ

þ
Xn
i¼1

βi
�
S *
i þEþyi� f ðX iÞ

�þXn
i¼1

γi
�
SiþS *

i

� (18)

Where α, β and γ are Lagrangian factors.
4.1.4 Solving Lagrangian function. Derive Formula (18) and get

W ¼
Xn
i¼1

ðαi � βiÞX i (19)

b ¼ yj �W T$X j þ E ¼ yj �
Xn
i¼1

ðαi � βiÞKðX i; X jÞ þ E (20)

Where αi and βi are not 0 simultaneously, and αi > 0;K(Xi,X) is the kernel function of SVM.
The linear regression function of SVM can be obtained as follows through the above four

steps

f ðX Þ ¼
Xn
i¼1

ðαi � βiÞKðX i; X Þ þ b (21)
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4.2 Gaussian kernel parameters of support vector machine
The most important difference between the SVM and linear regression is that the former
maps sample data to high-dimensional space through kernel function operation, that is, based
on the linear combination of nonlinear functions, and its network structure is shown in

Figure 3.
Linear regression
function and loss
function of SVM
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Figure 4. Sample pointX in the figure is subject to nonlinear transformation K(Xi,X) based
on i support vectors, and then the predicted magnitude can be obtained based on the linear
regression function of SVM, namely, Formula (21).

There are many forms of kernel functions. In this paper, the kernel function refers to the
Gaussian kernel function, which has a wide application range and strong differential ability
and can be used to better extract the local features of sample data (Steinwart, Hush, & Scovel,
2009). The calculation method is as follows

KðXi ;X Þ ¼ exp

 
−
kX �X ik2

2λ2

!
(22)

Where, λ is the Gaussian kernel parameter.

4.3 Training parameters of support vector machine
Appropriate training parameters shall be selected for a reasonable SVM model, so as to
minimize the error between predicted results and true values. The error-related parameters in
SVM include penalty parameter C, tolerance error E and Gaussian kernel parameter λ. The
calculation in this paper is based on the empirical calculation given by Cherkassky and Ma
(2002, 2004), which is as follows:

C ¼ maxðjμþ 3γj; jμ� 3γjÞ (23)

E ¼ 3η

ffiffiffiffiffiffiffiffi
ln n

n

r
(24)

λ ¼ 1

2q20:3
3
m

(25)

Figure 4.
Network structure of

support vector
machine
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Where u is the average value of the output results of training set data; γ is the standard
deviation of the output results of training set data; n is the number of data in the training set; η
is the standard deviation of the error between the predicted value and the true value obtained
by training; q is the range of input characteristic parameter values;m is the number of input
characteristic parameters.

According to the calculation method of training parameters given in Formulas (23)–(25),
the penalty parameter C, tolerance error E and Gaussian kernel parameter λ under different
time windows were determined after six crossing validations, and then the SVM-HRM
prediction model was established under different prediction time windows.

5. Comparison of magnitude prediction results of SVM-HRM prediction model
Based on the test data set, the magnitude prediction results of SVM-HRM prediction model
are compared as follows.

(1) Under the time window of 3.0 s, the magnitude prediction results of SVM-HRM
prediction model were compared with the traditional magnitude prediction models of
τc method and Pd method.

(2) According to relevant provisions ofThe TestMethod of EEWandMonitoring System
for High-Speed Railway in force, the single-station realization rate of magnitude
prediction of SVM-HRM prediction model was calculated and compared with the
magnitude prediction realization rate norm required inThe Test Method of EEW and
Monitoring System for High-Speed Railway.

5.1 Comparison with traditional magnitude prediction model
The predicted magnitude of SVM-HRM prediction model is defined as the predicted value,
and the cataloged magnitude of earthquake events is defined as the true value. If the
difference between the predicted value and the true value is errorωi, the standard deviation σ
of ωi is

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1
ðωi � ωÞ2

r
(26)

Where N is the number of data in the test set, and k is the kth data.
Under the time window of 3.0 s after the arrival of P-wave, the magnitude prediction

results of SVM-HRM prediction model and traditional magnitude prediction models of τc
method and Pd method were compared, and the standard deviation σ value of the three
models was calculated according to Formula (26). The results are as shown in Figure 5. In the
figure, the black solid line represents the 1:1 linear proportional relationship between the
predicted value and the true value, and the red dashed line represents the 1x standard
deviation σ of the error between the predicted value and the true value.

According to the calculation and Figure 5, the magnitude prediction error standard
deviation of τc method, Pd method and SVM-HRM prediction model is 1.64, 0.43 and 0.30
magnitude units, respectively, that is, the error standard deviation of SVM-HRM prediction
model is much smaller than that of τc method, and also smaller than that of Pd method.

It should be noted that τc method significantly overestimates the magnitude prediction
results of earthquakes below magnitude 5, that is, there is a phenomenon of “small
earthquake overestimation,” because τc method needs to screen the epicentral distance and
signal-to-noise ratio of earthquake data before a suitable prediction model is constructed.
There is no such step for SVM-HRMpredictionmodel constructed in this paper, which greatly
improves the universality of the model. At the same time, through the comparison of the
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Figure 5.
Comparison of

magnitude prediction
results between τc

method, Pdmethod and
SVM-HRM
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magnitude prediction results of Pdmethod, it can be clearly found that the “small earthquake
overestimation” of SVM-HRM prediction model has also been improved.

Obviously, through the comparison of τc method with Pd method, the accuracy of
magnitude prediction obtained by SVM-HRM prediction model is significantly improved.

5.2 Comparison with the realization rate norm of high-speed railway magnitude prediction
The change of magnitude prediction error standard deviation of SVM-HRM prediction model
based on the training data set and that based on the test data set with the prediction time
window is shown in Figure 6. In the figure, the abscissa is the time window, and 0 s is the
arrival time of P-wave.

It can be seen from Figure 6 that the two curves tend to coincide, and the maximum
difference of error standard deviation corresponding to the same time window does not
exceed 0.02, which indicates that the SVM-HRM prediction model constructed in all
prediction timewindows has strong generalization ability after the P-wave arrival, that is, the
SVM-HRM prediction model has strong adaptability under fresh data samples, and the
trained network can also give appropriate output of data other than the training data set with
the same rule; with the increase of time window, the error standard deviation of magnitude
prediction decreases significantly, which indicates that SVM-HRM prediction model has the
continuity of magnitude prediction, and with the gradual increase of time window after the
P-wave arrival, the accuracy of magnitude prediction increases significantly.

The Test Method of EEW and Monitoring System for High-Speed Railway stipulates and
puts forward requirements for the predicted magnitude realization rate in the first alarm (the

Figure 6.
Change of error
standard deviation of
SVM-HRM magnitude
prediction with time
window
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alarm issued for the first time) of earthquake early warning (China Railway Corporation,
2018), and takes the realization rate as an index parameter to measure the accuracy of
magnitude prediction of high-speed railway earthquake early warning system. The
realization rate is defined according to the percentage of the number of predicted
magnitude errors with their absolute values less than or equal to 1, and the calculation
formula is

r ¼ h

H
3 100% (27)

Where r is the realization rate; h is the number of predicted magnitude errorωi≤ 1 in the test
data; H is the total number of test data.

See Table 1 for the realization rate norm of magnitude prediction specified in The Test
Method of EEWandMonitoring System forHigh-Speed Railway. In this paper, the change rule
of realization ratewith prediction timewindowwas studied, aiming at analyzing how long the
SVM-HRM prediction model can give the accurate and reliable first alarmed magnitude after
the P-wave arrival.

It should be pointed out that in high-speed railway earthquake early warning, the
magnitude prediction results of multiple stations need to be weighted and averaged
according to the prediction results of single station. Therefore, in the comparative analysis of
the realization rate of multiple stations, as long as the statistical results of the realization rate
of single station in different magnitude ranges are better than the realization rate norm of
multiple stations, the realization rate of multiple stations is deemed as better than the norm.
Therefore, it is only necessary to compare the realization rate of single station in different
magnitude ranges with the corresponding realization rate norm of magnitude range in The
Test Method of EEW and Monitoring System for High-Speed Railway.

Under different time windows, the calculation results of single station realization rate of
magnitude prediction by SVM-HRM prediction model and the comparison with the
realization rate norm specified in The Test Method of EEW andMonitoring System for High-
Speed Railway are shown in Figure 7. The dashed lines in the figure are the single station (red
dashed line) and multiple stations (blue dashed line) realization rate norm bureau specified in
The Test Method of EEW and Monitoring System for High-Speed Railway in force (China
Railway Corporation, 2018).

It can be seen from Figure 7a that for earthquake events with magnitudes ranging from 3
to 8, the SVM-HRM prediction model obtains that the realization rate of the predicted
magnitude of a single station reaches 95% at 0.5 s after the P-wave arrival, which is better
than the realization rate norm of a single station specified in The Test Method of EEW and
Monitoring System for High-Speed Railway. With the increase of prediction time window, the
realization rate gradually increases, indicating that the accuracy of magnitude prediction
continues to increase; when the time window reaches 2.0 s, the magnitude prediction
realization rate of SVM-HRM prediction model is close to 100%.

Magnitude
prediction model

Magnitude range/
magnitude

The realization rate about the deviation not more than 1
between the first alarmed predicted magnitude and the actual
magnitude

Single station 3–8 Not less than 50%
Multiple stations 3–5 Not less than 30%

5–7 Not less than 90%
7–8 Not less than 60%

Table 1.
Current realization rate

norm of magnitude
prediction
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It can be seen fromFigure 7b that for earthquake events withmagnitudes ranging from 3 to 5,
the realization rate of SVM-HRM prediction model at 0.5 s after the P-wave arrival reaches
98%,which is better than themulti-station realization rate norm specified inTheTestMethod
of EEW andMonitoring System for High-Speed Railway. With the increase of prediction time
window, the realization rate gradually increases, indicating that the accuracy of magnitude
prediction continues to increase; when the time window reaches 1.0 s, the magnitude
prediction realization rate of SVM-HRM prediction model is close to 100%.

It can be seen from Figure 7c that for earthquake events with magnitudes ranging from 5
to 7, the realization rate of SVM-HRM prediction model reaches 92% at 1.5 s after the P-wave
arrival, which is better than the multi-station realization rate norm specified in The Test
Method of EEW and Monitoring System for High-Speed Railway. With the increase of
prediction time window, the realization rate gradually increases, indicating that the accuracy
of magnitude prediction continues to increase; when the time window reaches 4.5 s, the
magnitude prediction realization rate of SVM-HRM prediction model is close to 100%.

It can be seen from Figure 7d that for earthquake events with magnitudes ranging from 7 to
8, the realization rate of SVM-HRM prediction model at 0.5 s after P-wave arrival is 67%, which

Figure 7.
Comparison between
single-station
realization rate of SVM-
HRM prediction model
and the current
realization rate norm
under different time
windows
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is better than the multi-station realization rate norm specified in The Test Method of EEW and
Monitoring System for High-Speed Railway. With the increase of prediction time window, the
realization rate gradually increases, indicating that the accuracy of magnitude prediction
continues to increase; when the time window reaches 2.5 s, the magnitude prediction realization
rate of SVM-HRM prediction model reaches 95% and enters the platform stage. When the time
window reaches 6.0 s, the realization rate continues to increase, and when the time window
reaches 7.0 s, the magnitude prediction realization rate reaches 100%.

Through the above analysis, it can be found that the accuracy and continuity ofmagnitude
prediction of SVM-HRM prediction model established in this paper have been greatly
improved, whichmeet the requirements of relevant provisions onmagnitude prediction inThe
Test Method of EEW and Monitoring System for High-Speed Railway, and can be used for
magnitude prediction of high-speed railway earthquake early warning system.

6. Conclusion

(1) Under the 3.0 s time window after the P-wave arrival, compared with τc method and
Pd method for traditional earthquake early warning magnitude prediction, the
magnitude prediction error of SVM-HRM prediction model is obviously reduced; the
phenomenon of overestimation of small earthquakes is substantially improved; and
the accuracy is greatly increased.

(2) The training data set of SVM-HRM prediction model cannot be screened for
epicentral distance and signal-to-noise ratio, which indicates that the model has
strong universality; the error standard deviation of magnitude prediction results
between the training data set and the test data set of the model tends to be consistent,
and decreases significantly with the increase of timewindow,which indicates that the
model has strong generalization performance and the continuity of magnitude
prediction is greatly improved.

(3) After comparing the magnitude prediction results of SVM-HRM prediction model
with the first alarmed magnitude prediction realization rate norm required in The
Test Method of EEW andMonitoring System for High-Speed Railway, it can be found
that the single-station magnitude prediction realization rate of SVM-HRM prediction
model reaches 95% at 0.5 s after the P-wave arrival, which is better than the first
alarmed magnitude prediction realization rate norm required by The Test Method of
EEWandMonitoring System for High-Speed Railway. For the earthquake events with
the magnitudes ranging from 3 to 5, 5 to 7 and 7 to 8, the single-station magnitude
prediction realization rate is at 0.5 s, 1.5 s and 0.5 s after the P-wave arrival,
respectively, which is better than the multi-station realization rate norm. This
indicates that with the SVM-HRMpredictionmodel constructed in this paper, the first
alarm of earthquake early warning can be issued at the latest 1.5 s after the P-wave
arrival according to the magnitude prediction realization rate norm in The Test
Method of EEW and Monitoring System for High-Speed Railway, and the accuracy is
greatly improved.
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