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Abstract
Purpose – Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass
production. Newer generations of this technology work to overcome this by introducing more lasers or dramatically different processing
techniques. Current generation ML-PBF machines are typically not capable of taking on additional hardware to maximise productivity due to
inherent design limitations. Thus, any increases to be found in this generation of machines need to be implemented through design or
adjusting how the machine currently processes the material. The purpose of this paper is to identify the most beneficial existing methodologies
for the optimisation of productivity in existing ML-PBF equipment so that current users have a framework upon which they can improve their
processes.
Design/methodology/approach – The review method used here is the preferred reporting items for systematic review and meta-analysis
(PRISMA). This is complemented by using an artificial intelligence-assisted literature review tool known as Elicit. Scopus, WEEE, Web of Science and
Semantic Scholar databases were searched for articles using specific keywords and Boolean operators.
Findings – The PRIMSA and Elicit processes resulted in 51 papers that met the criteria. Of these, 24 indicated that by using a design of
experiment approach, processing parameters could be created that would increase productivity. The other themes identified include
scan strategy (11), surface alteration (11), changing of layer heights (17), artificial neural networks (3) and altering of the material (5). Due to
the nature of the studies, quantifying the effect of these themes on productivity was not always possible. However, studies citing altering
layer heights and processing parameters indicated the greatest quantifiable increase in productivity with values between 10% and 252%
cited. The literature, though not always explicit, depicts several avenues for the improvement of productivity for current-generation ML-PBF
machines.
Originality/value – This systematic literature review provides trends and themes that aim to influence and support future research directions for
maximising the productivity of the ML-PBF machines.
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List of Terminology

Contour ¼ A defined closed path that traces
the outermost region of a 2D slice;

D10, D50, D90 ¼The respective percentile for
describing the size distribution of
powder particles;

Design of
Experiments (DOE)

¼ A systematic method to study
relationships between multiple
variables;

Down-Skin ¼ Surfaces of a component facing
downward relative to the print
orientation;

Hatch ¼The path the laser takes to cover the
desired area of the 2D slice;

Island ¼ A closed region of a 2D slice;
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Neural network ¼ A process of using a series of
algorithms to recognise
relationships in data;

Power ¼The laser output at a system level,
denoted in watts;

Response surface
methodology (RSM)

¼ Amethod to explore the
relationships between variables that
can define the maximum and
minimum values of said
relationship;

Shell and Core ¼Core describes the centre region of
the component being produced;
shell is the outer region;

Sidewalls ¼ Any vertical sections at the edge of
an island;

Taguchi method ¼ Statistical method used to optimise
a design; and

Up-Skin ¼ Surfaces of a component facing
upward relative to the print
orientation.

Nomenclatures

AM ¼ Additive manufacturing;
ANN ¼ Artificial neural network;
CCD ¼Central composite design;
CPTi ¼Commercially pure titanium;
DfAM ¼Design for additive manufacturing;
DOE ¼Design of experiments;
ED ¼ Energy density;
FLG ¼ Few-layer graphene;
IOB ¼ Iron oxide black;
KW ¼Keyword;
LB-PBF ¼ Laser-based powder bed fusion;
ML-PBF ¼Metal laser-based powder bed fusion;
OEM ¼Original equipment manufacturer;
PBF ¼ Powder bed fusion;
RQ ¼ Research question;
RSM ¼ Response surface method;
SiC ¼ Silicon carbide;
SLR ¼ Systematic literature review; and
VED ¼ Volumetric energy density.

1. Introduction

Additive manufacturing (AM) is a technology that joins a
material feedstock in a layer-by-layer process, resulting in a
near-net shape part or product (Gibson et al., 2010). This
technique has been around since the 1980s and has come to
prominence in recent years as dependent technologies, such as
lasers and computational power, have become sufficiently
advanced and commercially viable to allow for it to be a
practical means of production (Korpela et al., 2020). Metal
laser-based powder bed fusion, ML-PBF, is a subset
technology of AM, it uses a laser to deliver energy to the
material and powder as thematerial feedstock.
ML-PBFmachines have generated sales of over two thousand

systems valued at e1.089bn in 2020. This was a reduction from
2019 and has been attributed to the COVID-19 pandemic
(Wohler, 2021). Concerning conventional machining and
forging applications, ML-PBF can be considered slower and

thus more cost-prohibitive (Attaran, 2017; UKRI, 2020). This
means it can be less competitive when producing simple
geometric designs (Salem et al., 2020; Schnabel et al., 2017). In
ML-PBF, the relatively poor surface finish (Clemens
Lieberwirth et al., 2017; Obilanade et al., 2021; Udroiu et al.,
2019) and the effect this has on material properties for certain
applications (Ruppert et al., 2017; Zadpoor, 2019) can mean
that this technique has high added costs due to the level of post-
processing required (Gordon et al., 2016; Kumbhar andMulay,
2018). This is also coupled with the perceived poor material
mechanical properties that can occur as a result of poor
processing. Thus, products produced will often require
expensive thermal treatments to rectify any internal defects or
undesirable microstructural characteristics (du Plessis and
Macdonald, 2020; Harkin et al., 2018). Limitedmaterial choices
with this technology are also seen as a barrier to adoption, but
also as a market opportunity for new materials to be developed
and become widely available for ML-PBF machines (Buranich
et al., 2020; Chekotu et al., 2019; Sohrabi et al., 2021).
The above, coupled with the high acquisition cost for

equipment, has led to the slow adoption of this technology by
some industries, especially for mass production purposes
(Marak et al., 2019; Sobota et al., 2020). Although the cost and
efficiency of ML-PBFmachines are improving, the amortisation
of the capital cost is still a significant factor in determining if
companies can adopt AM (Atzeni and Salmi, 2012; Di and
Yang, 2021; Ruffo et al., 2006; Thomas andGilbert, 2014).
The barriers outlined coalesce around a theme of the

processing capabilities of ML-PBF. This is to say that both
system limitations and user inputs will indicate the cost of
production via throughput, the resultant material properties
and the level of post-processing required. Based on this and the
preceding paragraph, the most appropriate research question
for this systematic literature review is:

RQ1. How can further optimisation of the productivity of
metal laser powder bed fusion machines be achieved
for industry-specific metal alloys to overcome barriers
to adoption?

This research question is formed around several keywords and
intentions that will contribute significantly to understanding
the opportunities for this technology. It narrows down the
specific process, ML-PBF, highlights the success indicators
and productivity, and then finally focuses on the processing of
industrially relevantmaterials.

2. Methodology

From reviewing existing systematic literature reviews in this
space and the research question; SCOPUS (Scopus, 2024),
Web of Science (WoS) (Web of Science, 2024) and IEEE
(IEEE Xplore, 2024) were selected as the most appropriate
databases, due to their wide use in the research and academic
community.
The method used to achieve this is the preferred reporting

items for systematic review andmeta-analysis (PRISMA) (Page
et al., 2021). The research question was broken down into
several keywords (KW) that drive the search string terms. The
KW are listed in Table 1. KW1 is indicative of umbrella terms
for the manufacturing process along with more specific

Productivity improvement opportunities for metal powder bed fusion

SeanMcConnell, David Tanner and Kyriakos I. Kourousis

Rapid Prototyping Journal

Volume 30 · Number 11 · 2024 · 230–245

231



acronyms. The terms in question were taken from the ISO
standard for AM terminology (ISO/TC 261, 2021). KW2 was
originally designated to isolate the material identified in the
research question; however, given the niche nature of the
technology and, in particular, the material, this keyword was
expanded to include the most common materials processed by
AM. KW3 is a collection of terms that the research question
was centralised around. KW4 was added to the string to avoid
returning papers that are irrelevant to the research question.
The operators, fields and filters were altered to suit each
database’s format.
Phase one of the process involved running the search string

through the databases as indicated in Table 1, which returned
4,804 results. Phase two involved the removal of duplicates; as
such, 1,725 results were removed. The majority of duplicates
occurred between SCOPUS and WoS as a result of journals
shared across both databases.
Phase three processed the remaining 3,079 results by

screening the titles and abstracts for their relevance to the
research question of this study. This filtered out 3,005 results.
The reasons for this were that the material or manufacturing
process not being related to the research question. Phase four
then took the remaining 74 results and conducted the full-text
screening. A total of 28 were filtered out by how closely they
addressed the research question, and particularly how they
addressed productivity.
Phase five took the remaining 46 results and analysed the

themes within each with respect to the research question. The
complete screening process is illustrated in Figure 1.

2.1 Artificial intelligence-assisted complimentary search
As the PRISMA process involves the interpretation of the
research question by the researcher to ensure the KW and
semantics of the questions are captured by the search string,
there are possibilities for the string not to fully capture the
intent of the question and thus miss out on literature that may
be critical. Following the initial PRISMA review process, it
became evident that tools such as artificial intelligence (AI)
software may be able to cover any gaps caused by the
interpretation of the research question into a search string. As
such, several tools were investigated; these are listed and
briefly described in Table 2. Following a review of the
capabilities and accessibility of each, it was decided to use the
Elicit tool (Elicit, 2024) as it offers transparency to the AI
functions and algorithms used.

Taking the user’s research question, Elicit (Elicit, 2024)
passes it through the Semantic Scholar Academic Graph API
(Semantic Scholar Academic Graph API, 2024) and, in turn, uses
both Open AI’s Chat GPT 3 (ChatGPT, 2024) and Google’s
FLAN T5 (FLAN-T5,5, 2024) in various forms to deliver a
literature review of the top eight ranked papers. This is
complemented by other outputs such as summary extraction,
intervention definition and outcomes measured. The processes
are mapped in Figure 2.
The research question defined earlier was put into the Elicit

engine with the appropriate filters applied. The top eight results
were returned on the user interface with additional information.
At this point, the number of results was extended to 21 to
increase the chances of finding relevant papers that were missed
by the PRISMA approach. The resulting data was then
exported to a �.csv file for integration with the existing literature
review files. This allowed for the removal of duplicates and
further investigation.
The 21 results from the Elicit process were then processed

through the PRISMAworkflow outlined in Figure 1 to determine
which of the returned papers should be included in this systematic
literature review. Duplicates with the PRISMA systematic
literature review results were initially removed (n¼ 5), followed by
the removal of papers that did not pass the abstract and full-text
screening (n¼ 11), leavingfive further papers to be analysed.

3. Results and discussion

3.1 Thematic analysis
The year of publication for the resultant articles is shown in the
summarised results of Figure 3. There has been a significant
increase in the number of results in the last four years (2020–
2023); the trend of results shows the beginning of a shift
towards the productivity of ML-PBF systems as they mature
and are adopted by industry.
The sources of these articles are predominately clustered

around journals related to advanced manufacturing, material
science and laser processing. This is consistent with what was
expected during the development of the research question and
the search string. As the research question is centred around
particular material types, it was pertinent to take note of the
material analysed in each paper. The materials used tended to
be steel and titanium alloys, indicating that they are likely the
most mature concerning developing a more productive
manufacturing process.

Table 1 Search string terms and filters used for the systematic literature review database search

Database Scopus, web of science, IEEE

Search date 17th July 2023
Keywords KW1: “additive manufacturing” OR “metal additive manufacturing” OR “powder bed fusion” OR “laser based additive manufacturing”

OR “selective laser melting” OR “SLM” OR “PBF” OR “3d printing"
KW2: “titanium” OR “ti” OR “steel” OR “aluminium” OR “nickel"
KW3: “optimisation” OR “optimization” OR “efficiency” OR “productivity” OR “production"
KW4: “weld” OR “wire-arc” OR “DED” OR “wire” OR “cold spray” OR “electron” OR “deposition” Or “binder"

Boolean operators "KW1” AND “KW2” AND “KW3” NOT “KW4"
Fields Title, abstract, authors keywords
Filters English

Source: Table by authors
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Each of the resultant articles reviewed pertained to an
increase in productivity, in many cases, the quantification of
such was discussed qualitatively with only a few having
quantifiable values placed on their increase in productivity.
Table 3 summarises the build rate improvement quantified
across 14 of the papers that include this information, the
majority of which were published within the past three years. In
line with the data presented in Figure 3, six of these papers
focused on steel alloys, six on Ti6Al4V and two on aluminium
alloys. As each of the papers based this improvement in
productivity on various sources, across multiple platforms and

several materials it is impossible to create a consistent
benchmark. With an average increase in productivity of 35%,
there is an indication that the work performed on existing ML-
PBF machines has yielded an incremental improvement over
conventional processing methods. Work that involves the
alteration of the machine’s laser beam shape (Lantzsch et al.,
2022) or power (Huang et al., 2022) has shown build rate
improvements of 150% and 450%, respectively.
During the full text and review process, each article was

tagged with a theme that best represented or matched the
content. Table 4 provides the leading themes, a description and

Figure 1 PRISMA-based process flow diagram for systematic literature review process undertaken

Table 2 Literature review tools investigated

Tool Capabilities Database Link

Elicit Paper summary, reference extraction Semantic scholar www.elicit.org (Elicit, 2024)
Silvi PDF capture, document screening, PRIMSA creation Pubmed, ClinicalTrials.gov www.silvi.ai (Silvi.ai, 2024)
Iris Table extraction, paper summary, reference extraction, automated search N/A www.iris.ai (Iris.ai, 2024)
Scholarcy Table extraction, paper summary, reference extraction N/A www.scholarcy.com (Scholarcy, 2024)
Rayyan PRIMSA creation, Mendeley import N/A www.rayyan.ai (Rayyan, 2024)
Enago Paper summary, reference extraction N/A www.read.enago.com(Enago Read, 2024)

Source: Table by authors
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the rate of occurrence across the articles read. The content of
some articles led them to be placed in several categories. Thus,
the total exceeds the number of articles reviewed.

3.2 Process
Given the ease of access to the parameters used in ML-PBF, a
significant body of the literature reviewed exhibited evidence of
altering the process to achieve a productivity increase. The
process was an identified theme across 24 of the 51 results. This
came across in three differing ways; the alteration of existing
parameters, the adaption of downstream processing steps and
the altering of the production equipment, all of which showed
varying degrees of improvement in relation to the productivity
of the process and are summarised in Table 5.
The results from the literature review indicate that

productivity can be achieved by altering parameters outside of
layer thickness to achieve faster build speeds. The majority of
work accomplished here is based around a design of experiment

Figure 2 Elicit literature review process garnered from information on their website (Elicit, 2023)
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Figure 3 Number of systematic literature review results by year of
publication
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(DOE) approach; these typically take on power, speed and
hatch spacing as the parameters to alter (Arısoy et al., 2017;
Kose et al., 2020; Laakso et al., 2016; Leicht et al., 2020; Liu
et al., 2022; Sun et al., 2016; Wang et al., 2019). The majority
of approaches used some optimisation model for the
parameters, with Response SurfaceMethodology (RSM) being
the most common model used. The model is compared
favourably when used as a substitute for others, such as
Taguchi and neural network methods (Fotovvati et al., 2020;
Khaimovich et al., 2022; Nguyen et al., 2020). The most
common approach for understanding the likelihood of success
when creating a DOE for new parameters was that of
quantifying the amount of energy applied to a given volumetric
area that is volumetric energy density (VED), to establish a

windowwhere the print is likely to succeed. Although common,
it was shown to have inherent flaws as the factors that can affect
density and production speed may not be captured using VED.
This is illustrated by some bodies of work having identical
VEDs of 100 J/mm3, with one having half the build rate of the
other (Laakso et al., 2016). As multiple factors are being
altered, it is not straightforward to discern the effect of each of
the factors on the process. Hatch distance is often used as a
factor as an increase has a significant effect on the build rate;
this being said, increasing it without compensating the spot size
or scanning strategy can lead to an increase in the number and
type of defects (Defanti et al., 2022;Makoana et al., 2018).
As components built via ML-PBF typically require heat

treatment to alleviate internal stresses or to produce more

Table 3 List of systematic literature review results that quantify the build rate increase as a result of the experimental interventions. Values reported by the
studies are relative to the baseline values used by the studies’ investigators as such are not interrelated

Author Title Year Material
Build rate

increase (%)

(Sun et al., 2016) Selective laser melting of stainless steel 316 L with low porosity and high build rates 2016 Steel 71
(de Souza et al., 2019) Effect of laser speed, layer thickness and part position on the mechanical properties of

maraging 300 parts manufactured by selective laser melting
2019 Steel 7–40

(Herzog et al., 2020) Productivity optimisation of laser powder bed fusion by hot isostatic pressing 2020 Titanium 24.5
(Yonehara et al., 2020) Parameter optimisation of the high-power laser powder bed fusion process for H13 tool

steel
2020 Steel 30

Pauzon et al., 2020b) Effect of the process gas and scan speed on the properties and productivity of thin 316 L
structures produced by laser-powder bed fusion

2020 Steel 37

(Pauzon et al., 2020a) Argon-helium mixtures as laser-powder bed fusion atmospheres: towards increased build
rate of Ti-6Al-4V

2020 Titanium 40

(de Formanoir et al.,
2020)

Increasing the productivity of laser powder bed fusion: Influence of the hull-bulk strategy
on part quality, microstructure and mechanical performance of Ti-6Al-4V

2020 Titanium 25

(Du Plessis et al., 2021) Productivity enhancement of laser powder bed fusion using compensated shelled
geometries and hot isostatic pressing

2021 Titanium 12

(Gullane et al., 2021) On the use of multiple layer thicknesses within laser powder bed fusion and the effect on
mechanical properties

2021 Titanium 22

(Liu et al., 2021) Study on performance optimisation of 316 L stainless steel parts by High-Efficiency
Selective Laser Melting

2021 Steel 3

(Defanti et al., 2022) Boosting Productivity of Laser Powder Bed Fusion for AlSi10Mg 2022 Aluminium 25
(Sinico et al., 2022) High-speed laser powder bed fusion of M789 tool steel with an optimized 120mm layer

thickness approach
2022 Steel 91

(Wang et al., 2023) Study on the organisation and properties of Ti-6Al-4V fabricated by laser powder bed
fusion based on the thickness of the gradient layer

2023 Titanium 25

(Del Guercio and
Simonelli, 2023)

Increasing the build rate of high-strength aluminium alloys produced by laser powder bed
fusion

2023 Aluminium 50

Source: Table by authors

Table 4 Emergent themes following the analysis of articles resulting from the PRISMA process

Theme Description No. of articles

Process Infers processing parameters were investigated to improve typical process porosity/microstructures 24
Layer Infers layer height changes were used to achieve higher productivity 17
Scan Infers’ alternative scanning strategy is being investigated 11
Surface Infers work done on the improvement of surfaces through scan strategies or parameter developments 11
Material Infers material changes to improve processing 5
Artificial neural
networks (ANN)

Infers the use of artificial neural networks (ANN) and machine learning to predict and optimize process parameters 3

Source: Table by authors
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desirable microstructures, there has been significant published
work surrounding the alteration of the process, so that as-built
components do not require substantial post-processing
(Shipley et al., 2018). The nature of the ML-PBF process
presents challenges for achieving repeatability across multiple
machines. In effect, there have been several studies
investigating the utilisation of more repeatable downstream
processes, such as hot isostatic pressing (HIP), to compensate
for issues caused by theML-PBF process (Benzing et al., 2019;
Cegan et al., 2020; Du Plessis et al., 2021). For example, if a
component is fabricated as a shell of the final form, with metal
powder remaining inside the part during the process, and
designed to compensate for shrinkage, it has been shown that a
HIP process can create fully dense components with similar
properties to those fully processed by ML-PBF (Du Plessis
et al., 2021). The success of taking this processing approach to
improve productivity appears to be more conducive to
components that do not have a large variation in cross-sectional
area. Fabrication at high speeds allows for more variation and a
lack of control in the production system. As this is not desirable
when scaling industrial applications, processes such as HIP and
vacuum furnace heat treatment can be used to homogenise the
components produced, allowing for higher tolerance of

porosity when designing parameter sets (Herzog et al., 2020;
Kaletsch et al., 2023), an example of such process flow can be
seen in Figure 4.
Methods for altering the process are not limited to the

process parameters or downstream processes; in some cases,
modifications were introduced to existing ML-PBF machines
to allow them to process materials more efficiently. Approaches
took the form of altering the focal size up to 500mm to increase
the hatch spacing (Antony et al., 2020), changing the laser
beam shape to prevent keyholing at high energies and speeds
(Grünewald et al., 2021; Lantzsch et al., 2022), as well as the
introduction of high-powered lasers to allow the process to
maintain at sufficient VED at high speeds (Huang et al., 2022).
All these approaches represent an increase in the build rate, but
as they require a physical modification of equipment, it limits
the ability to scale these approaches to existing ML-PBF
machines. Beyond physical manipulation of equipment, one
approach is to make use of alternative gases that allow for
processing speed increases of up to 37% on certain geometry
due to the reduction in soot generated and increased ability for
the processing gas to conduct heat away from the melt pool
(Pauzon et al., 2020a; Pauzon et al., 2020b).

3.3 Layer
Of the literature reviewed, 17 papers addressed the possibility
of increasing the layer thickness beyond the typical values
recommended by themanufacturers of theML-PBFmachines,
affording the ability to increase productivity. This is an
apparent option for improving the productivity of existing ML-
PBF machines; however, it comes with significant processing
challenges as the materials, laser parameters and physical
design of the machines have been designed only for the
manufacturer-prescribed typical layer thickness values. In the
studies reviewed, varying degrees of success have been reported
by utilising higher layer thickness values across the four
material groups under examination (steel, titanium, nickel and
aluminium), as presented in Figure 3 with the interventions
and effects of such summarised in Table 6.
As there are a large number of processing factors at play

within any ML-PBF machine (typically over 50), the most
common starting point for the development of increased layers
is to design a series of experiments that vary the core laser
parameters to establish a processing window for the material in
question (Calignano, 2014; Pfaff et al., 2020). Within the
published literature, there are studies where layer thicknesses

Table 5 Interventions and effects of such as a result of altering the
process to increase productivity

Intervention Effect

Alteration of printing parameters
using the volumetric energy density
(VED) as a guiding principle

Higher processing speeds were
achieved

Application of hot isostatic pressing
to components produced outside of
the optimised processing window

Reduction in porosity levels
Geometric shrinkage of
components
Nominal mechanical properties
maintained
Expansion of processing window

Modification of laser power or beam
profile

Reduction of keyholing at high
powers and speeds
Expansion of processing window

Introduction of alternative gas
mixtures during the production
process

Reduction of soot generation
during the melting process
Reduction in residual stress
Expansion of processing window

Source: Table by authors

Figure 4 Representation of the shell core concept: (a) sample with high porosity in the core with dense shell (after PBF-LB, cavities have loose powder
inside); (b) fully densified sample after HIP; (c) different areas in the microstructure after HIP
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up to 200mm of steel 316L were tested, with several of these
reporting densities of 99.99% (Chen et al., 2022; de Souza
et al., 2019; Laohaprapanon et al., 2012; Leicht et al., 2021; Liu
et al., 2021; Sinico et al., 2022). Examples of the various
parameters and resultant density from this approach can be
seen in Figure 5. Given the increased thickness of successive
layers, the penetration depth and melt pool dynamics have to
be accounted for when developing the parameters (Hassine
et al., 2021). As such, VED is often maintained or increased;
thus, the scanning speed of parameters is often reduced as the
power of existingML-PBFmachines can be a limiting factor to
maintaining sufficient VED. Therefore, the reported

processing speed for increased layer thickness for steel 316L
can be relatively low. The upper bound reported for 200mm
layers was a build rate of 12.4 mm3/s (Chen et al., 2022).
Pending any other issues arising from fabricating parts at
thicker layers, this speed demonstrates a tenfold improvement
over typical build rates of steel 316L on 400W ML-PBF
machines. The most common approach for designing the
experiments here was to use VED as the indicator for an
acceptable processing window whilst using DOE tools to
discern the values for the parameters being altered. In some
cases, the resulting mechanical properties of the materials were
reported to surpass the requirements of ASTM A240M-18
(ASTM International, 2019; Leicht et al., 2021).
This direct parameter optimisation approach appears to be

dominant for steel-based powders but was also shown to be
applicable and adopted for Ti6Al4V, Inconel 718 and
aluminium alloys, with an increase in productivity to be
demonstrated across all of them (Del Guercio and Simonelli,
2023; Jing et al., 2021; Shoukr et al., 2023).
Beyond the method of altering the dominant laser

parameters to achieve density at higher layer thicknesses
outlined above, another approach to achieve higher
productivity with altered layer heights is to adopt a technique
known as “shell and core” or “hull and bulk”. This involves
using different parameters for the interior of a part and the
outer contours, as shown in Figure 6. By employing this
technique, one can use differing layer heights for each
parameter set, thus leaving the interior to be melted at

Table 6 Interventions and effects of such as a result of altering the layer
thickness to increase productivity

Intervention Effect

Increasing layer height beyond
typical values

A general increase in porosity
Reduction of mechanical properties
Increased processing speed
Increased surface roughness

Application of shell and core
strategies to allow for surface
integrity whilst using increased
layer heights

Generation of multiple grain
structures within components
Reduction of mechanical properties
Maintenance of surface roughness
values
Increased processing speed

Source: Table by authors

Figure 5 Porosity levels measured within maraging steel samples in relation to the layer thickness and laser scanning speed
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intermittent layers. This can lead to higher build rates, whilst
maintaining a reasonable surface on the outer faces. The
process is often denoted by Shell(n0,n1 1) & Core(n0,
n1 2) or (n0,n13), where n is the layer number, depending
on the differential between the layer heights. Using this
technique, Tool Steel H13 was produced at 99.97% density
using 100mm layer heights on a dual laser specialised setup
from SLM solutions (Yonehara et al., 2020). This type of
ML-PBF machine has been developed for the express
purpose of shell and core strategies. The resultant
improvement in processing speed over a typical 400W power
setup was found to be 30%. The limiting factor here was of
lower scanning speed required to maintain sufficient energy
density (Yonehara et al., 2020).
For Ti6Al4V, the “shell and core” strategy was used

across layer thickness between 30mm and 150mm. All
studies reviewed indicated that as a result of using this
approach, the productivity could be improved over the
baseline for the respective equipment without significant
impact on the mechanical properties and dimensional
accuracy of the produced components when the typical post-
processing and heat treatment processes were followed (de
Formanoir et al., 2020; Kan et al., 2022; Wang et al., 2023).
The nature of this technique means that its effect on
productivity is dependent on the surface-to-volume ratio of
the components being produced. One of the studies
indicated that for structures with a volume-to-surface ratio
of less than 5 cm�1 an increase in productivity of 25% may
be achieved, whilst it was not recommended for structures
with a volume-to-surface ratio over 10 cm�1. Examples of
such parts are lattice and gyroid structures (de Formanoir
et al., 2020). It was noted that due to the experimental
design of the studies, the interlayer time of specimens would
not be representative of how they will be produced,
potentially resulting in false indicators of the mechanical and
dimensional properties of the samples tested. The effect of
multiple layer thicknesses on a single part was noted as
having a reducing effect on the elongation of Ti6Al4V
(Gullane et al., 2021) suggesting that there may be a need for
further investigation for the feasibility of this method.
Due to the complex nature of the ML-PBF process, the

literature findings have indicated that it can be experimentally
intensive to develop parameters for increased layer thicknesses.
To overcome this, some experiments explored the development
of models that would obtain the experimental data from simple
single-line tracks to create simulations accounting for various
factors and ultimately decrease the time taken to develop

high-layer thickness parameter sets (Hassine et al., 2021; Ten
et al., 2020). Models also offer some insight into the effect of
parameters, such as laser focus, which are typically not altered,
and may allow for processing at higher layer thicknesses
without increasing the creation of inherent defects.

3.4 Surface
Two major drivers of the cost of parts produced by ML-PBF
are the removal of supporting materials and the reduction of
surface roughness (Baumers et al., 2016). Of the 51 papers
reviewed, 11 are examining these aspects. These articles were
marked with the surface theme falling into two major
subcategories; characterisation of surface roughness
improvements as a result of parameter development and the
development of parameters that would allow for the reduction
of supports required on down skins. The first subcategory
showed that by taking both unstructured (Dong et al., 2021a)
and structured experimental approaches (Deng et al., 2020;
Fotovvati et al., 2020) modification of the process parameters
from the standard approach can lead to an improvement in the
surface roughness without compromising the mechanical
properties or density (Tang et al., 2020; Wang et al., 2019).
Some of the approaches taken here to reduce the experimental
load and determine the optimum parameters were that of
Taguchi and central composite design (CCD) (Deng et al.,
2020; Fotovvati et al., 2020). The studies which utilised the
process were successful in identifying the parameters that
would affect the level of roughness as a result of altering
parameters. In some cases, they were able to differentiate and
optimise for roughness across the side, up and down faces, the
level to which they affect various part properties can be seen in
Table 7 (Fotovvati et al., 2020).
The studies that focused on improving the down faces

through support removal or parameter changes were
successful in that. By modifying laser power, speed and
several down-facing layers, overhangs of 30° can be fabricated
with densities over 99% (Mertens et al., 2014); doing so
demonstrated that the application of normal energy densities
to aluminium can create a warping effect in the material as a
result of the reduction of material beneath that can act as a
heat sink. This has also been shown as an effective approach
for allowing for increased overhang angles in Ti6Al4V parts
(Tang et al., 2020; Wang et al., 2013). In some cases,
supporting structures cannot be avoided, such as a material’s
propensity for residual stress build-up or to avoid the creation
of undesirable microstructures due to the cooling profile
(Wang et al., 2019). To accommodate this whilst allowing for
the ease of removal of supports, the contact area between the
components and supports can be modified in both geometry
and density (Calignano, 2014).
Except for the general laser parameters provided in Table 7

(i.e. laser power, hatch spacing, scan speed, layer thickness and
stripe width), altering other ML-PBF machine operational
aspects may also lead to an improvement in the surface
roughness of the produced components. In particular, past
research studies have found that increasing the number of edge
contours can reduce the surface roughness by 80%, to a value
of 4.3mm in standard Ti6Al4V powder, 15-45mm particle
sizing with a D50 of 30mm (Shi et al., 2022; Wan et al., 2020).
Within the capabilities of ML-PBF machines, one can also

Figure 6 Schematic representation of a hull-bulk strategy
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employ secondary scanning of surface faces to allow for the re-
melting of the material to reduce the surface roughness
(Alrbaey et al., 2014). Employing this approach will lead to
increased production times as the laser will be performing
multiple passes of certain areas; as such, it needs to be taken
into account when using this approach over conventional
surface treatment processes.
Although difficult to quantify, it is clear that the

improvement in surface roughness and reduction of supporting
structures demonstrated in the literature review will mostly
have a positive effect on the reduction of cost per component
produced and ultimately will allow for further adoption of this
technology. The interventions and effects have been
summarised in Table 8.

3.5 Scan
The laser scan path, which fills in the hatch area of a part, can
have an impact on the time required to produce the part.
Typical hatch patterns used in ML-PBF are that of meander,
stripe and checkerboard. As each of these patterns leads to
varying interlayer time, number of hatch borders and internal
stresses, the mechanical properties, such as ultimate tensile
strength and hardness, can vary depending on the pattern used
(Shi et al., 2022; Slodczyk et al., 2021).
For thin wall features, commonly seen in ML-PBF, lattices

and gyroids, which have cross-sectional areas above the
contouring distance, the laser scan path can lead to long
production times as the number of jumps between when the
laser is active is high with respect to the cross-sectional area. To
avoid this, one can produce thin walls with single or multiple
contour passes allowing the laser to scan an entire island
without the laser turned off. In effect, this can lead not only to
an increased build rate but possibly to a reduction in surface
roughness (Cao et al., 2022;Wan et al., 2020).
Another scan strategy that can be adopted is that of using

multiple layer heights within a part to reduce the time
consumed on bulk areas which do not possess complex
features. This approach is usually coupled with the “shell and
core” strategy discussed in Section 3.3. It applies to the scan
theme as it involves altering the scan pattern, thus creating a
new zone between the contour and bulk hatching that can
have differing mechanical properties (de Formanoir et al.,
2020; Gullane et al., 2021; Kan et al., 2022; Shi et al., 2022;
Yonehara et al., 2020). The interventions and effects have
been summarised in Table 9.

Table 7 p-Values and contribution percentage of the process parameters in different responses based on ANOVA results

Parameter
Microhardness Relative density Top surface roughness

p-value Contribution (%) p-value Contribution (%) p-value Contribution (%)

A (laser power) 0.071 45.3 0.103 22.6 0.004 19
B (scan speed) 0.185 23.3 0.197 14.1 0.002 27.7
C (hatch spacing) 0.334 13.9 0.098 23.5 0.001 33.6
D (layer thickness) 0.542 7.9 0.075 28 0.004 17.6
E (stripe width) 0.984 0.7 0.464 6.2 0.282 1.3
Error – 8.8 – 5.6 – 0.7

Upskin surface Upskin horizontal line Upskin vertical line
p-value Contribution (%) p-value Contribution (%) p-value Contribution (%)

A (laser power) 0.304 11.4 0.192 22.6 0.035 20.4
B (scan speed) 0.196 46.6 0.15 27.3 0.02 28.4
C (hatch spacing) 0.114 24.8 0.131 30 0.034 20.8
D (layer thickness) 0.065 35.9 0.5 8.8 0.029 22.8
E (stripe width) 0.624 4.7 0.878 2.5 0.258 5.2
Error 6.6 8.8 2.6

Downskin surface Downskin horizontal line Downskin vertical line
p-value Contribution (%) p-value Contribution (%) p-value Contribution (%)

A (laser power) 0.646 5.6 0.956 2.9 0.694 7.6
B (scan speed) 0.996 0.3 0.99 1.2 0.879 3.6
C (hatch spacing) 0.772 3.7 0.972 2.2 0.705 7.3
D (layer thickness) 0.024 81.2 0.141 64.7 0.071 66.9
E (stripe width) 0.974 0.9 0.769 9 0.966 1.6
Error – 8.3 – 20 – 13

Source: Table courtesy of Fotovvati et al., 2020

Table 8 Interventions and effects of such as a result optimising the
parameter sets for surface roughness

Intervention Effect

Development of alternative
parameter sets using
various statistical
techniques

Reduction of supports required to build
overhung components
Increased support free angle of 30o

Reduction in downstream post-processing
Increased number of
contour passes

Reduction of surface roughness by 80%
Reduction in downstream post-processing

Application of re-melting
laser pass

Reduction of surface roughness
Reduction in downstream post-processing

Source: Table by authors
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3.6 Artificial neural networks
A trend seen across the literature reviewed is that of the
application of increasingly sophisticated machine learning
models to develop parameter sets. Given the goal is to optimise
a process and that there are significant volumes of data
available, the ML-PBF process is quite conducive to the use of
tools such as artificial neural networks (ANNs). In some cases,
ANNs were shown to be capable of using over 2048 data points
(Nguyen et al., 2020). The resulting parameters were able to
achieve 99.98% part density. Although the source of the
training data is not disclosed by the authors, the achieved
density value offers an indication of the ability of ANNs to
reduce physical experimentation in the pursuit of optimal
parameters. The efficacy of using ANNs for this process was
determined by comparing its output to the results obtained via
the Taguchi method and the RSM for the optimisation of
Ti6Al4V parameters. In particular, it was found that the
Taguchi method was the least accurate, with ANNs being the
most accurate, across every mechanical performance predictor
except microhardness, where the RSM was more accurate
(Fotovvati et al., 2020). Given that the ANNmodels are trained
on bodies of data, the accuracy of such a model will be
dependent on the quality of the data given. As ML-PBF is a
complex process, where repeatability across machines is
challenging to achieve, ANNsmay be limited in use for the final
optimisation of a production process but may have an
important role in the development of parameters beyond those
currently used (Chen et al., 2022). The interventions and
effects have been summarised in Table 10.
The papers identified by the SLR process discussed here

represent a larger movement in the optimisation of ML-PBF
through the use of ANNs (Goh et al., 2021). Work done in this
area have focused on the optimisation of the material and
mechanical performance of the outputted components but do
illustrate that through the opportunities to derive more complex

multi objective optimisation studies whilst reducing the cost for
such. If fully realised in manufacturing environments, ANNs
represent an opportunity to optimise not for just a machine or
material, but for every build, leading to a more robust and
repeatablemanufacturingmethod.

3.7 Materials
Most materials processed by ML-PBF have been used for
decades in mainstream (conventional) manufacturing methods.
SinceML-PBF is a full melt powder-based process that induces
heat using a laser, many material-specific mechanical and
metallurgical issues can prevent ML-PBF from improving
productivity. Asmost industries are hesitant to change the alloys
they use, other methods of changing materials have been
identified in the reviewed literature. One method in question is
the introduction of nanoparticles to coat the base material. The
premise is that by increasing the absorptivity of the material, the
energy required to melt it will be reduced. Pannitz (2021)
applied three nanocoatings to steel 1.2709 powder, silicon
carbide (SIC), few-layer graphene (FLG) and iron oxide black
(IOB), to increase the energy absorption rate of the material,
SEM images of such are shown in Figure 7. It was also found
that the increased roughness, as a result of the addition of the
coating, creates beam traps which in turn resulted in less energy
being reflected away. The materials processed as part of this
study were capable of reaching a 99.99% density, with the
coated materials achieving higher build rates (Pannitz et al.,
2021). A similar technique was used on aluminium with TiC
nanocoatings, which led to a laser efficiency increase of up to
512%, with the use of optimised parameters (Qu et al., 2022).
Currently, ML-PBF uses powder spherical particles which

are subject to strict quality control standards and are produced
using high-cost atomisation processes (Wang et al., 2015b;
Wang et al., 2015a). Through the use of ball milling, in situ
alloying and parameters optimisation, lower-grade powder can
be processed leading to a cost reduction of over 85% for
materials such as Ti6Al4V (Dong et al., 2021b). Although not a
direct efficiency gain, the reduction in process cost may offset
part of the overall component cost on current-generation ML-
PBFmachines.
Both approaches demonstrate opportunities for novel

materials to improveML-PBF productivity whilst also showing
that the addition of such can affect the final part chemistry, thus
possibly creating a new barrier to entry as a result of inertia
towards the adoption of new material grades, the interventions
and effects have been summarised in Table 11.

3.7 Efficacy of the elicit process
Using only the research question, the Elicit process was capable
of contributing to the systematic literature review by adding
10.2% of the papers used in the final analysis. Of the 21
returned results put through the PRISMA framework, 55%
passed. These breakdown as five new review papers and five
duplicates of the 46 that had passed through themanual search.
This demonstrates a very high affinity for the Elicit process to
interpret the research question in a manner similar to that done
by the researcher. Given the Elicit process used a single source
(Semantic Scholar) and themanual systematic literature review
used three (WEEE, WoS and SCOPUS), a divergence in the
results of both searches is to be expected. Some results returned

Table 9 Interventions and effects of such as a result of altering scan
strategy to increase productivity

Intervention Effect

Reduction or elimination of hatch
scanning on thin wall features by
increasing the number of contour
passes or geometric alterations

Reduction in the laser scanner
movement and downtime
Higher processing speeds were
achieved

Altering of scanning pattern for bulk
material

Reduction of residual stress
with certain scanning patterns
Higher processing speeds made
possible

Source: Table by authors

Table 10 Interventions and effects of such as a result of the use of
artificial neural networks to increase productivity

Intervention Effect

Application of neural networks to
determine the optimum processing
window

Increased mechanical
performance
Higher processing speeds were
achieved

Source: Table by authors
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did semantically differ from the expected as lower results
ranked lacked relevance. This is likely caused by not only the
interpretation of the question being asked but also the result of
the database being used and the requirement to return 21
results regardless of how well they answer the questions. As
such, it is imperative that even with an AI-driven tool like this,
the results are subsequently run through an agreed PRIMSA
framework.
The area where the Elicit system worked and can later serve

systematic literature reviews better is in its ability to summarise
abstracts, extract interventions and results and give
interpretations of how the top papers can answer the research
question being asked. The ability to quickly see summaries of
abstracts and interventions can expedite the manual review
process used within the PRISMA framework. The top-ranked
papers were summarised by the Elicit tool as the following:

The papers collectively suggest that optimizing the productivity of laser
powder bed fusion machines for industry-specific metal alloys can overcome
barriers to adoption. Herzog et al. (2020) proposes a combined approach of
Laser Powder Bed Fusion and subsequent Hot Isostatic Pressing as a
method to improve productivity. Defanti et al. (2022) pursues the combined
optimization of part quality and process productivity for AlSi10Mg by going
beyond the commonly used approach based solely on volumetric energy
density. Lantzsch et al. (2021) presents a flexible dual-fibre laser array for
LPBF processing, which allows for more dynamic laser beam movement
across the powder bed. Vicario 2021 discusses a long-term European project
aiming at the development of new optimized powders and LPB/SLM
process parameters to maximize productivity, control roundness and

roughness of cooling channels, maximize powder life, reduce the tendency
to cracking, and increase thermal fatigue properties. Overall, these papers
suggest that optimizing the productivity of laser powder bed fusion
machines for industry-specific metal alloys can lead to increased
productivity and cost-effectiveness, making the technology more attractive
to cost-sensitive industries. (Literature review summary of top 4 papers from
Elicit, Elicit.org)

4. Conclusions

The data extracted and analysed from the systematic literature
review has given credence to the research question and broad
applicability of such whilst also reinforcing the timing of it with
regard to current research trends and the prominent materials
being used inML-PBF.
The thematic categories that emerged help in answering and

developing solutions to the research question; improved
productivity of current generation ML-PBF machines
processing industrially relevant materials. Significant points of
note are as follows:
� Alternating scanning approaches can lead to an increase in

productivity of up to 252% in situations where the
geometry is suitable.

� Using approaches such as a RSM DOE to develop higher
thickness processing parameters can lead to productivity
increases of 65% with a relatively negligible impact on
mechanical performance, according to published literature.

� Where data was available, it was found that applying the
described productivity-increasing methods typically leads
to poorer mechanical properties.

� Although the SLR method appears to have generated
sufficient relative literature to address the research
question, the terminology used may exclude relevant
work. As such, it should be noted that the efficacy of this
method will depend on closely on the KW used and the
numbers of participants engage in the methodology.

� The concurrent generation of a systematic literature review
through AI tools like Elicit can contribute to the traditional

Figure 7 SEMmicrographs: (a) feedstock 1.2709; (b) 1 vol.% SiC; (c) 1 vol.% IOB and (d) 0.75 vol.% FLG

Table 11 Interventions and effects of altering the processed material to
improve productivity

Intervention Effect

Application of secondary materials
to standard AM powders

Increased laser efficiency recorded
Higher processing speeds were
achieved

Processing of sub-optimal ball-
milled powders

Creation of fully dense components
Cost reduction of 85%

Source: Table by authors
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PRIMSA approach by interpreting the research question
without the bias of a research team, as shown by the
acceptable additional content discovered by the Elicit search.
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