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Abstract

Purpose — The contemporary landscape of supply chains necessitates a comprehensive integration of multiple
components encompassing production, distribution and customer engagement. The pursuit of supply chain
harmony underscores the significance of pricing strategies within the framework of dual-channel distribution,
particularly when confronted with the dynamics of asymmetric demand performance.
Design/methodology/approach — This paper delves into a nuanced decision-making challenge anchored in a
dual-channel distribution context featuring a retailer and two distinct products. Notably, the retailer’s decision-
making process employs the computational framework of dual grey numbers, a robust tool for handling
uncertainty.

Findings — This study revolves around applying game theory to manufacturers. Each manufacturer presents its
aggregated price proposition to the retailer. Subsequently, the retailer identifies the optimal pricing configuration
among the manufacturers’ aggregate prices while adhering to constraints such as spatial classification and
inventory costs. This article’s contribution extends to delineating the retailer’s capacity to discern the influence
of product market potential and the aggregate product cost on the overall demand.

Originality/value — The model’s innovation lies in its harmonious fusion of spatial classification, pricing
strategies and inventory control. Notably, this novel integration provides a platform for unraveling the intricate
interplay between non-symmetric market potential, production costs and cross-sensitivity. The investigation is
underscored by the utilization of the double interval grey numbers, a powerful computational approach that
accommodates the inherent uncertainty pervasive in the domain. This study fills a gap in the existing literature
by offering an integrated framework unifying spatial allocation, pricing decisions and inventory optimization.
Keywords Spatial classification, Pricing, Inventory control, Double interval grey numbers,

Non-symmetric demand

Paper type Research paper

1. Introduction
In today’s dynamic retail landscape, businesses face multifaceted challenges in optimizing
pricing strategies amidst fierce competition, shifting consumer preferences and complex '
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supply chain constraints. Retailers must carefully balance pricing decisions with inventory
management and shelf space allocation to maximize profitability and customer satisfaction.
Inherent uncertainties in demand patterns, production costs, and competitive actions further
complicate this intricate interplay between pricing, inventory, and spatial factors.

Consider a supermarket chain grappling with pricing choices for its vast assortment of
products. Category managers must determine optimal price points that attract customers and
drive sales while accounting for limited shelf space and inventory holding costs. Setting prices
too high risks losing customers to rivals, while pricing too low squeezes already thin margins.
Effective pricing is not merely a numbers game but a strategic balancing act involving many
interconnected variables.

Compounding these challenges, retailers often need complete visibility into consumer
demand responses to price changes. Will a 10% discount on a popular item lead to a
proportional uptick in sales, or will demand remain relatively inelastic? How will raising
prices impact on overall category revenues when substitute products are available? The
uncertainty surrounding price elasticity adds another layer of complexity to pricing decisions.

Moreover, retailers must adapt their strategies to asymmetries in market dynamics.
Demand for essential goods like bread and milk may be less sensitive to price fluctuations than
demand for discretionary items. Retailers need robust frameworks to quantify and manage
these differing demand patterns and competitive landscapes across their product mix.

Existing literature has explored various dimensions of pricing optimization, inventory
management, and shelf space allocation in retail contexts. However, integrated models that
holistically capture the interdependencies between these critical factors while accounting for
real-world complexities like demand uncertainty and market asymmetry remain needed.

This study aims to bridge this gap by proposing a novel decision-making framework that
unifies spatial classification, pricing optimization, and inventory control. By leveraging grey
numbers to encapsulate demand and cost uncertainties and applying game theory principles to
model competitive interactions, the approach offers retailers a more comprehensive and
realistic tool for navigating pricing challenges in complex market environments.

1.1 Grey number definition

A grey number provides a mathematical representation of the uncertainty, variability, and
partial knowledge retailers face regarding consumer demand patterns, production costs from
suppliers, competitive pricing changes, and other external or internal factors that influence
pricing decisions (Liu and Lin, 2006). For example, a retailer may have a grey demand number
ranging from 500-800 units for a product across the potential pricing spectrum, encapsulating
their inherent uncertainty based on volatile market conditions. Similarly, suppliers may quote
production costs to the retailer as a grey number between $2 and $3.50 per unit, depending on
materials, energy, labor, and other variables. The flexibility of the grey number formulation
allows the integrated model to capture these demand, cost, and pricing uncertainties within a
structured interval range. Grounding the techniques in real-world specifics, the vast array of
grey number inputs translates to actionable retail pricing strategy outputs amidst complex
supply chain dynamics involving multifaceted tradeoffs between space, inventory, and
customer demand factors.

1.2 Elaborating on price sensitivity dynamics

Higher price sensitivity factors for a product indicate that changes in pricing are expected to
have a more significant influence on demand levels (Hoch et al., 1995). For example, staple
goods often have higher sensitivity parameters around 0.7-0.9 compared to more
differentiated specialty products with lower sensitivity in the 0.2-0.5 range (Bolton, 1989).
The model incorporates these relative price sensitivities between categories and individual
goods in optimizing tradeoffs — acknowledging that the same pricing shift can spur greatly
asymmetric demand responses. Beyond product traits, positioning and prominence also
impact sensitivity. Items placed in high visibility locations see consumer demand vary more



acutely with price changes compared to less emphasized spots (Bezawada et al., 2009). By
calibrating sensitivity ratios, retailers can quantify anticipated demand elasticity across their
assortments to inform pricing strategies and classification decisions. Computation techniques
leverage sensitivity factors to unlock optimization pathways not revealed in symmetrical,
static modeling of price-demand relationships.

This study proposes an integrated model incorporating spatial classification, pricing
strategies, and inventory control optimization, addressing a gap in the current retail supply
chain management literature. The model employs computational techniques of dual grey
interval numbers and game theory principles to tackle uncertainty and complexity. The
findings provide insights into managing pricing dynamics for asymmetric market demand.

2. Literature review

The efficient allocation of products within storage spaces profoundly impacts individual
product sales and the overall sales performance of a retail store. The allocation process directly
influences store operating costs, making it a pivotal element of in-store management
strategies. Over the past 4 decades, researchers have endeavored to develop nuanced models
for categorizing diverse product inventories, yielding various simplified forms (Zhou et al.,
2003) that cater to distinct retail environments.

The scientific framework of spatial classification systems pertains to the intricate challenge
of optimally distributing scarce spatial resources within a retail establishment. The contours of
this challenge morph according to the retail sector, company strategies, vendor relationships,
and store layouts (Wang et al., 2015). Striking a balance between product availability and
inventory levels is essential. This equilibrium hinges on aligning required products with
existing inventory—a cornerstone principle that guides store operations (Urban, 2005).

Simultaneously optimizing spatial allocation entails a delicate interplay between inventory
and pricing considerations. In today’s landscape, inventory costs greatly influence product
positioning, while pricing strategies wield comparable significance within the model. This
paper underscores the fusion of spatial allocation, pricing, and inventory optimization within
the retail supply chain. To address this multifaceted challenge, this study employs game theory
principles and dual interval grey numbers to account for demand uncertainty and inventory
control. The resulting model navigates the intricate terrain of spatial allocation, pricing, and
inventory decisions within the retail sphere.

This literature review reveals research on spatial classification, inventory management, and
pricing decisions in retail supply chains. However, frameworks unifying these areas to
optimize retail performance are lacking. The present study proposes an integrated model to
address this gap.

Llaguno et al. (2022) examined the joint optimization of inventory, pricing, and space
allocation in supply chain management contexts, elucidating the interconnections among these
factors and their implications for overall performance. (Miranzadeh et al., 2015) delved into an
optimization model tailored for inventory management within supply chains involving
multiple suppliers and retailers, acknowledging the complexities of diverse supply chain
relationships. (Sun et al., 2022) proposed a coordination mechanism for inventory control in
decentralized supply chains, addressing the challenges of maintaining efficient operations
across distributed entities.

Sajadi and Noori-daryan (2011) presented a mathematical model for optimizing pricing
and inventory decisions in production planning, contributing to the intricate balance between
pricing and inventory management. (Amelian et al., 2015) explored the joint optimization of
pricing and inventory management, specifically in perishable food production, aligning their
approach with the perishable nature of goods. (Hatami-Marbini et al., 2020) and
(Mahmoudi and Piri, 2013) developed an inventory optimization model for a three-echelon
supply chain network, considering the complexities of multilayered supply chain structures.

Modern Supply
Chain Research
and Applications




MSCRA

Emami et al. (2014) optimized dynamic pricing and inventory control policies in
production systems, tackling the dynamic nature of pricing in manufacturing settings. (Sajadi
et al., 2016) incorporated pricing and inventory decisions into a production planning model
under uncertainty, acknowledging the role of uncertainty in influencing decision-making.
(Malekpour et al., 2016) jointly optimized inventory levels and production schedules through
mixed integer linear programming, offering an integrated production and inventory
management approach.

Aiassi et al. (2020) integrated pricing, inventory, and operations planning decisions using
robust optimization, emphasizing the importance of robust strategies in the face of uncertainty.
(Jamshidi et al., 2021) applied dynamic pricing and revenue management concepts to quantify
entrepreneurial opportunities, highlighting the role of pricing strategies in capitalizing on
business potential. (Amelian et al., 2022) multi-objective optimization approach for
scheduling could be applied to simultaneously optimize pricing, inventory, and shelf space
allocation in retail stores.

A comprehensive literature review uncovers a rich tapestry of research related to spatial
classification, especially within the retail domain. Notable works include (Hwang et al., 2005),
who classify storage spatial literature into multi-level branded product scenarios, and (Reyes
and Frazier, 2007), who delve into nonlinear numerical programming models for spatial
classification allocation with conflicting objectives. Pricing, a pivotal financial dimension, has
spurred diverse theories and models over the last 5 decades. (Konur and Geunes, 2016) delve
into pricing decisions within a retail chain context, while (Bianchi-Aguiar et al., 2018)
scrutinize optimal pricing strategies within the food supply chain. Game theory enters the
arena through works such as (Jamali and Rasti Barzuki, 2018) exploration of pricing dynamics
between green and non-green products and (Tao et al., 2019) focus on pricing and inventory
policies amid RFID-enhanced inventory management.

The present study lies at the nexus of three pivotal components—spatial classification,
inventory control, and pricing decisions—intersecting to drive retail performance
optimization. (Martin Herr et al., 2006) and (Mahmoodi and Hashemi, 2024) employ game
theory to dissect spatial classification and pricing choices within marketing channels,
suggesting that unit cost or price adjustments lead to corresponding spatial reallocations.
(Wang et al., 2015) delve into pricing and spatial classification within a supply chain
encompassing a retailer and two manufacturers. Meanwhile, (Reisi et al., 2019) propose an
approximate solution for retail pricing and shelf allocation to maximize profits without
fostering manufacturer competition.

Inventory management enters the discourse as (Singha et al., 2017) redefine inventory
policies while accommodating spatial classification capacities. (Chang et al., 2016) and
(Mahmoodi et al., 2022a, b) tackles the interplay between desired spatial classification
levels, inventory cycles, and ending inventory to enhance annual profits. (Amit et al.,
2015) offer an optimal spatial classification storage policy by integrating demand-driven
external uncertainty into the classroom newsvendor model. (Sony and Suthar, 2018)
address inventory challenges tied to unpredictable deterioration, seeking to optimize
pricing strategies. (Chen et al., 2018) explore traditional pricing and inventory control
mechanisms while accounting for time-dependent dynamics.

Recent supply chain management research has continued to explore joint optimization
models in pricing, inventory, and spatial allocation decisions. (Mishra and Singh, 2021)
developed an integrated pricing and inventory policy for deteriorating items,
incorporating promotional efforts and price-sensitive demand. (Rong et al., 2020),
(Mahmoodi et al., 2023 a, b) proposed an optimization approach balancing food quality and
supply chain efficiency. (Soni et al., 2020) optimized pricing and lot-sizing policies under
permissible payment delays. Zhang et al. (2019) examined pricing and inventory decisions for
perishable goods in retail stores.

Recent literature on pricing models reflects an intensifying focus on tackling uncertainty
and integrating supply chain dynamics. Sophisticated approaches have emerged utilizing



blockchain (Park et al., 2022), machine learning (Umut et al., 2023), and optimization
algorithms (Mahmoodi et al.,, 2024) and (Hossack-McKey et al., 2023) to navigate
increasingly complex retail pricing environments. However, opportunities remain to
advance joint pricing-inventory-space frameworks matching the interconnected nature of
decisions facing retailers. While Wang et al. (2022) and Millar et al. (2023, 2024) explore
coordinating pricing in the supply chain context, a gap persists in simultaneously addressing
inventory and classification constraints. This underscores the value of this study’s holistic
perspective, accounting for the multiplicity of factors retailers must weigh in optimizing
pricing strategies. By consolidating spatial, inventory, and cost considerations, this model
delivers an enhanced decision-making toolkit for retailers compared to pricing literature
focused solely on isolated decision variables (Mahmoodi et al., 2022a, b).

Despite the extensive body of literature exploring various aspects of pricing, inventory
management, and spatial classification in retail contexts, there remain notable limitations and
opportunities for further research. Existing studies often focus on optimizing isolated
components, such as pricing strategies or inventory policies, without fully capturing the
complex interdependencies between these factors. Moreover, many models rely on
assumptions of symmetric demand patterns and deterministic environments, overlooking
the inherent uncertainties and asymmetries prevalent in real-world retail settings. The
literature also needs comprehensive frameworks integrating pricing, inventory, and spatial
decisions while accounting for the practical constraints and tradeoffs retailers face, such as
limited shelf space and inventory holding costs. Furthermore, applying advanced
computational techniques, such as grey numbers and game theory, to model uncertainty and
competitive dynamics in retail pricing still needs to be explored. These gaps underscore the
need for a holistic and robust optimization approach that captures the intricacies of pricing
decisions in the face of demand variability, market asymmetries, and supply chain
complexities. The present study aims to address these limitations by proposing an
integrated model that unifies spatial classification, inventory control, and pricing
optimization, leveraging grey number representations and game theory principles to
navigate the challenges of retail pricing in complex and uncertain environments. By
bridging these gaps, this research contributes to the literature by offering a comprehensive and
practical decision-making framework for retailers seeking to optimize their pricing strategies
in the face of multifaceted challenges.

These works highlight the complex considerations of managing pricing, inventory levels,
product deterioration, promotions, efficiency, and more within modern supply chains.
However, there remains an opportunity to advance joint optimization frameworks specifically
for retail contexts with demand uncertainty and spatial constraints. The proposed model
contributes by uniting computational techniques of dual grey numbers and game theory to
balance pricing dynamics, asymmetric demand, spatial classification, inventory control, and
multifaceted interconnections impacting retail performance. In this way, it builds upon recent
literature on the nexus of these vital retail supply chain management factors.

However, current literature reveals a gap in frameworks unifying spatial allocation, pricing
decisions, and inventory control. This study proposes an integrated model to optimize retail
performance through these interconnected components.

While existing works have examined joint optimization of pricing, inventory, and spatial
factors, this study offers an integrated model designed explicitly for retail contexts dealing
with demand uncertainty and inventory constraints. The proposed approach builds on these
previous efforts by combining computational techniques of dual grey interval numbers and
game theory within a cohesive framework. The model’s heart applies game theory for
manufacturer pricing while introducing a retailer decision layer to identify optimal
configurations adhering to spatial classification and inventory tradeoffs. In this way, the
model provides a novel platform based on existing literature that connects pricing dynamics to
retail performance factors like asymmetric demand, product market potential, production
costs, and their complex interplay.
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The present study lies at the nexus of these pivotal components—spatial classification,
inventory control, pricing decisions, and their interdependencies—intersecting to optimize
retail performance. Yet, the existing literature underscores a discernible gap that this study
aspires to bridge. This research combines spatial allocation, pricing, and inventory
optimization, unifying these three pillars within the retail landscape. As evidenced by the
literature review, attention has been scattered across these themes, often focusing on isolated
aspects or twofold combinations. This study addresses this gap by offering a comprehensive
framework that unites spatial allocation, pricing, and inventory control to foster a nuanced
understanding of their interplay.

2.1 Model distinctiveness and literature contributions

By consolidating the interconnected supply chain considerations of pricing dynamics,
inventory control policies, retail spatial layout constraints, and multifaceted tradeoffs, this
proposed integrated model provides a significant step forward compared to existing pricing
research concentrated on isolated variables. The capabilities unlocked through the novel
computational approach combining grey number representations and game theory principles
facilitate precise, data-driven decision support for retailers navigating complex markets.
Specifically, the model advances literature through:

Inclusion of inventory holding capacity and shelf space limits that restrict pricing freedom
based on realistic retail constraints. Handling inherent uncertainty and variability in costs and
demand patterns impact pricing. Game theory is applied to mimic competitive manufacturing
pricing scenarios. Asymmetric relationships between price shifts and demand responses are
quantified.

These differentiating facets underscore the originality of a comprehensive retail-focused
decision model that enhances capabilities beyond conventional symmetrical pricing-only
considerations. Both researchers and practitioners stand to benefit from the platform to test
assumptions, weigh constraints, assess scenarios, and formulate superior dynamic pricing
strategy foundations despite market volatility.

The structure of this article is as follows: Section 3 delves into the development of a
comprehensive mathematical model. Subsequently, Section 4 undertakes an analytical
exploration of the model’s underpinnings. Section 5 unfolds a numerical case study, shedding
light on real-world implications. Finally, Section 6 concludes this endeavor, encapsulating key
insights and avenues for further research.

3. Materials and methods
This section is divided into two parts. Below, in Section 3.1, the calculation of dual grey
numbers is introduced twice. Then, under 3.2, the problem model is presented.

3.1 Calculation of dual interval grey numbers

Grey numbers are the central unit of the grey system theory. The meaning of these numbers is
related to the propositions. The interval grey numbers can be defined according to the meaning
of the propositions (Deng, 1982).

Definition 1. A grey number with the upper and lower boundary of the grey number is
called the time interval and is shown as § € [0~ &*]. For proposition X, there
is information about the Theorem (). Due to insufficient information on the
theorem or the limited cognitive ability of individuals, people can only
obtain a set of probable values of the theorems, and they cannot estimate the
exact rate (Liu and Lin, 2006).



(1)0 is an interval grey number in the Theorem p(6).

3.1.1 The regret theory based on probable conflict states. In the prerequisite for an
independent principle, there are two feelings of regret and joy in preferential decision
relationships. Regrets and joy in regret theory are based on the comparison of each state with
an ideal point. If the ideal point is considered the reference point, the value of the assessment of
the point is less than the ideal point value and regrets in the decision-makers’ theory. If the
negative point is taken as the reference point, the value of the assessment of the government
point is more than the negative ideal point, and decision-makers are happy to be able to
evaluate.

According to (Guo et al., 2015), the value of assessing each state S; proportional to the value
of the regret of the ideal point is g;;,. The value of happiness relative to the negative ideal is oy,
defined as follows:

gin(0) = 1 — exp(8]py,(0) — x; |) ¢))
0 (0) = 1 — exp(8]py,(0) — x;,|) )

Where x;” = max (xy,, X, k = 1,2, ...,m) is the positive ideal point, x, = min (xy,,Xg,
k=1,2,...,m) is the negative ideal point, and §(5 > 0) is the regret deviation coefficient of
the decision-makers. The value of the function of regret-happiness in each state is based on the
assessment of decision-makers defined as follows:

Yiu(0) = gun(0) + 01 (6) 3)

3.1.2 Selection and ordering of the expression of double interval grey numbers in
different states. Consider the decision-making view about a proposition’s
applicable state of conflict. Suppose that the interval grey number [c;,d;] and [a;, ;] are
decision maker’s perception of information in the first state of decision; the interval
grey number [c;,d,] and [a,,b,] are decision-makers awareness about the second
decision. Because the factors affecting the decision maker are identified in two cases, one is
the expected winner, and the other is the decision maker’s regret. The interval grey number
[a;, b;] is related to the second decision. It provides information about revenue or profit and
represents the lost data of the decision-maker’s behavior, such as psychological and emotional
information.

These two decision-making indicators can describe a double interval grey number
with the sign of [ci,di], [a1,b1], [c2,d2], [aa,b2]. In the current paper, the interval grey
number [a;, b;] is the confirmation of the decision maker or the degree of support for
possible states in different pricing conditions with the spatial classification that will
be discussed in the next section. The interval grey number [c;, d;] means the degree of regret
of the decision maker or the degree of happiness compared to the positive or negative
ideal points. For easier comparison, the double interval grey numbers are changed
to ([a1 y b]}, [max{dl s dz} - d] s maX{dl s dz} - Cl}) and ([(12, bg], [max{dl s dz} - dz, max
{di,dr} = ca]).

According to the definition, the double interval grey number is a real number in the interval,
the order of the number of possible degrees of grey number of each order is in the range of the
interval grey number relative to other interval grey numbers. Then, the possible concept of
ordering the interval grey numbers can be confirmed.

Definition 2. If ®, = ([a,b1],[c1,d1]), ®2 = ([az, 2], [c2,d5]) are two interval grey
numbers, then the probability ®; > &, is defined as:
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P(® 2®) = Almax{l ~ max(& 0),0}

bl—al+b2—a1’
dy — ¢
A 1-— — 0,0
+2max{ ma>((dl_c1_|_d2_c17 ), }
b2+d2—(a1—cl) ) }
+As;maxq 1 — max ,01,0
’ { (b1+d1_(al_C1)+b2+d2—(ll2—Cz)

“4)

where the equations 4,, 45,43 € [0, 1]and 4; + 4, + A; = 1is confirmed. The relation between
® 5 ®, is determined as follows:

(1) if we have a; = c;and b; = d;, ® = ®, and p = 0.5.

(2) Ifthereis anintersection between ®; and ®,, p > 0.5then ® is greater than ®, shown
as ®; > ®,. When p < 0.5, ®; would less than ®, shown as ®, < ®x.

3.2 Modeling

Consider a supply chain model with one retailer and two producers with a limited spatial
classification. Producers are intended with producers A and B; also, their products are called
with the exact identification. Both producers sell their products through retailers. The
production cost of products A and B are defined as C4(®) and Cz(®) respectively. The retailer
determines the available spatial classification and delivers orders from producers to fill the
spatial classification. The S(®) indicates spatial classification and represents the number of
product units stored on the classification. It is assumed that the retailer stores all his inventory
in the spatial classification, similar to the demand for that product. g4(®) is the demand for
product A and g5(®) is the demand for product B with the linear demand function defined as
follows:

(®) = pa(®) + 04(®) (ps(®) —

a (®)) ©)
95(®) = b(®) — ps(®) + O5(®) (pa(®) — Ps(®)

Pa
PB (@ ) (6)
where, p, (®) and p(®) are the retail price of products A and B, respectively, 6, (®) and 05(®)
are the price reciprocal sensitivity parameters for products A and B. Hence,
04(®),03(®) €10,1] the non-systematic parameters of price reciprocal sensitivity
determine when the change in product rate is not the same for products. Parameter a and b
are market potential for products A and B. The market potential also reflects consumer
sentiment to buy products without any prices.

The linear demand functions are assumed in this model as they provide a straightforward
representation of the relationship between price and demand, which is commonly used in the
literature (Huang et al., 2013) and (Talluri and Van Ryzin, 2006). These functions capture the
essential dynamics of price sensitivity and cross-elasticity between products, allowing for
tractable analysis and insights. Real-world examples of linear demand functions can be found
in various retail contexts, such as consumer packaged goods, where demand for products tends
to exhibit a linear response to price changes within a certain range (Tellis, 1988).

This paper applies the three-step decision-making problem. It is assumed that the retailer is
the only supply chain supervisor. First, the retailer determines the spatial classification for a
product and then provides the information to the producers. Then, the two producers compete to
determine the best wholesale price. In general, they simultaneously play games to determine the
wholesale price. Finally, concerning the wholesale prices, the retailer selects the retail price.
This problem is solved through inverse induction, discussed in the following sub-sections.



3.2.1 Decisions on retail prices. W4(®) is the wholesale price of product A and W(®) is
the wholesale price of product B. At this stage, considering the spatial classification and the
wholesale price, the retailer decides on the retail price to increase his profit. The net profit of
retailers is as follows:

IL(®) = (04(®) — wa(®)4a(®) + (p5(®) — ws(®))95(®) ™

The decision on the retail price is subject to g4 (®) + ¢p(®) < S(®). The retailer encounters
the problem of the nonlinear objective function. The optimal retail prices are specified
according to Croesh-Kant-Tucker conditions shown in Lemma 1.

Lemma1. According to the values S(®), W4 (®), Wx(®) the optimal retail price p, (®) and
pr(®) is as follows:

If S(®) > $1(®)

2a(®)(1 + 05(®)) + b(®)(64(®) + 05(®))
_ twa (®)E(®) + wa(®)E(®) + wp(®)E3(®)

PA(®) Es(®) ®
a(®)(04(®) + 05(®)) + 2b(®) (1 + 64(®))
Con L A(®)E(®) + wa(®)E(®)
P5(®) = Es(®) ©
b) If S(®) < $1(®)

a(®)(3 + 04(®) + 365(®)) + b(®)(1 + 364(®) + 05(®))

2(®) = +S5(®) X Fi(®) + wa(®)F3(®) + ws(®)F5(®) (10)
A 4(1404(®) + 05(®))

a(®)(1 + 305(®) + 04(®)) + b(®)(3 + 05(®) + 304(®))

p;(@) _ +S5(®) X F2(®) + wa(®)F4(®) + wp(®)Fs(®) an

4(1+64(®) + 05(®))

The expression S (®) is given in Appendix A, and the auxiliary equations E;(®), ..., Es(®)
and F(®), ..., Fs(®) are in Appendix B.

3.2.2 Decision on the wholesale price. Each producer identifies his wholesale price. The
profit function for producers is defined as follows:

[L(®) = n(®) — ca(®))aa(®), (12)
[L(®) = (ws(®) — cs(®))g5(®), (13)

Lemma 2. According to the wholesale price W, (®) and Wz(®), their optimal values are
determined:

fS(®) > $(®)
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MSCRA i (@) = a(®)(1 + 05(®))G1(®) + b(®)G3(®) — 8cA(®)Gs(®) — 2¢5(®)G7(®)

a(®)G2(®) +b(®)(1 +04(®))G4(®) + b(®

wy(®) =

b) If S(®) < $3(®)

. 1 a(®) — b(®) + S(6 4 04(®) — 05(®))
vi® =3 {ZC’* (®) +aal®) + [+ 0,(®) + 04(®) }
. 1 b(®) — a(®) + S(6 — 04(®) + 05(®))
"i(®) =3 { A(®) +2c5(@) + 1+ 04(8) + 04(®) }

o) If S(®) € [53(®), 5:(®)]

a(®) + b(®)64(®) + a(®)05(®) — S(64(®) + 5(®)) + ca(®) (1 + 64(®) + 5(®))

wi(®) = 8)

A 2(1404(®) + 05(®))

Wi(®) = b(®)(1 +604(®)) + a(®)0:(®) — S(04(®) + 03(®)) + c(®) (1 + 64(®) + 03(®))
! 2(1+04(®) + 04(®))

(14)

5)

16)

an

18)
19

The value S3(®)andS,(®) is shown in Appendix A. The auxiliary expressions of
Gi(®), ..., Go(®) introduced are shown in Equations (14), (15) are defined in Appendix C.
Based on the optimal wholesale prices available in Lemma 2, the optimal retail price and

demand for each product in different cases are as follows:
If S(®) > S>(®), the demand for the two products is as follows:

2(1 + 64(®))(a(®)H\ (®) + b(®)H:(®)) + 2¢a(®)Hs(®) + 4cs(®)Hr(®)

4. (®) = Hy(®)
s o _ 21+ 05(®))(a(@)H:(®) + b(®)Ha(®)) + 4ca(®)Ho(®) + 2¢5(®)Hs(®)
qB(®) - H9(®)

(20)

@D

Aucxiliary terms H; (®), ..., Ho(®) up to H in the above equations are given in Appendix E.

If S(®) < S3(®), the demand for two products is as follows:

cron L [a(®) — b(®) + S(6 + 04(®) — 05(®))
CIA(®)—12{*CA(®)(1+9A( ®) + 05(®)) + cs(®)(1 +0A(®)+93(®))}

7,(®) = {a@) b(®) — cs(®) + 6 — 64(®)(cs(®) + 5) }
A 12 | +05(®)(S — 2¢4(®)) + ca(®)(1 + 04(®) + 03(®))

If $;(®) < S(®) < S»(®), the demand for two products is as follows:

. 1 [a(®) — b(®) + 252 + 04(®) — 05(R))
91(®) =3 L(cB(@) C e (@)(1+6:(®) + %(@))}
Lo LB(®) — a(®) + 252 — 6,(®) + 05(®))
9(®) =3 L(m(@) Zea(®)(1+ 0,(®) + e,g(@))}

(22)

(23)

(24)

(25)

These results are utilized to provide Theorem 1, which determines how to specify the optimal

spatial classification studied in the next sub-section.



3.2.3 Decision on the size of retail spatial classification. Retailer has S(®) as input data the
spatial classification. The retail profit function is calculated follows:

I[L@®=]](® -k xs’ (26)

where, k(®) X §%, as convex incremental function, indicates the cost of the spatial
classification. k(®) is a positive constant that shows the parameter of the spatial
classification cost. The spatial classification cost function was first introduced by Kurtulus
and Toktay (2011) [25]. Based on the Lemma 2, the optimal spatial classification is obtained in
Theorem 1.

Theorem 1. The optimal spatial classification is determined as follows:

IfK(®) > K (®)
fK(®) < K (®)

[a(@)ll (®) + b(®)L(®) — (1+64(®) + 05(®)) }
(@) = (ca(®)5(®) + CB(®)Z Eg;) an
IfK(®) < Ki(®)
{a(@)fl (®) + b(®)1(®) — (1 +64(®) + 05(Q)) }
5(®) = (ca(®)J3(®) + CB(®)ZE§))) (28)

K (®) is given in Appendix D I;(®), ..., I5(®) and J; (®), ..., Js(®) are in Appendix.

By determining the optimal retail space in Theorem 1, the optimal retail price, wholesale
price, and demand for channel members are determined as follows. The optimal retail price for
products is as follows:

IfK(®) > K (®)

a(®)(Li(®) + Ui(®)) + b(®)(Ls(®) + U>(®))

Pi(®) = (1 + 0,(®) + 05(®))[ca(®)(Ls (gﬁ)(; )Ua (®)) + ¢5(®)(L1(®) + Us(®))] 29)
a(®)(L(®) + Ui(®)) + b(®)(Ls(®) + Ux(®)) + (1 + 64(®) + 05(®))
Py(®) = [ca(®)(Ls(®) + Us(®)) + CB(®)§]I;8(g) + U4(®))] 30)

where the auxiliary terms U, (®), ..., Us(®) and L (®), ..., Ls(®) are given in Appendix F.
If K(®) < K;(®)

)

)
P(®) = [ca(®)(Ns(®) + M3(®)) + c5(®) (Ns(®) + My(®))] (32)

where the auxiliary terms M, (®), ..., M5(®) and N;(®), ..., N3(®) are given in Appendix.
According to equations (31) and (32) similar results for wholesale price is obtained as
follows:
fK(®) > K (®)
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Ww,(®) = 20A(®);CB(®) T j(ef?e;) lﬁi@)) +(6+6,(®) — 05(®)) X O(®)
(33)
(34)
where the auxiliary term O(®) is given in Appendix.
IfK(®) < Ki(®)
oy CA(®) | a(®) +b(®)04(®) + a(®)05(®)
wa(®) = ——+ 201 0:(®) 1 05(®) + P(®) (35)
ey CB(®)  a(®) + b(®)04(®) + a(®)0(®)

where the auxiliary term P(®) is given in Appendix.
The demand for product is as follows:
IfK(®) > K (®)

(1: (®) _ a(®)Ql(®) + b(@)Q3(®) - (1 + gA(ée;)(;)aﬂ(®))(CA(®)Q5<®) - CE(®)Q7(®)) (37)
0(®) = —-a(®)2:(®) + b(®)04(®) + (1 + gAé;e})Q;; 05(®))(ca(®)06(®) — c5(®)0s(®)) (38)

where the auxiliary term Q;(®), ..., Qo(®) is given in Appendix.
If K(®) < Ki(®)

(@R (®) +b(®)R3(®) — (1 +04(®) + 05(®)) (ca(®)Rs(®) — c3(®)R:(®))

q/*x (®> = R9(®) (39)
0(®) = a(®)R>(®) + b(®)R4(®) — (1 + a4(1e®;2g)96(®))(CA(®)Rﬁ(®) — c5(Q)Rs(®)) (40)

The auxiliary terms are given in the Appendix.

4. An analytic study of parameters
For the expressions of Equations (27) and (28) and the expressions for the optimal demand for
the products described in Equations (37) — (40), it is shown that the relation that
74 (®) + g3(®) = S*(®) holds for the optimal spatial classification in Theorem 1.

Because /1(®),L(®),5(®) and J,(®),J2(®),Js(®) are positive, the optimal spatial
classification will increase with market potential. The rate of increase in demand equals to
I ((8))/15 (®) when K(®) > K;(®).J; (tX))/J5 (®) the increase rate of product B is I, (®)/I5 (®)

when K(®) > K;(®) and Jz(®)/J5 (®) when K(®) < K (®).
Since 9 [1 1(®) /15(®) } / IK(®) < 0 the increase in the spatial classification cost reduces

the positive impact of the market potential in the spatial classification, it also means that if the
potential of the product market is constant, retailers can increase total demand by reducing
units. Because 53(®), 1,(®), I5(®) and J3(®), J4+(®), J5(®) are positive, it is found that the
desirable spatial classifications decrease with the production cost.



The reduced rate in the demand for product A is ;(®) /15(®) when K(®) > K;(®)

and /3(®);, (g When K(®) < Ki(®). 1£ 3 [13(®) /L (®)} / IK(®) > 0,9 [14(®) L (®)} /

IK(®) > 0, d [13 ®), JS@)} / IK(®) > 0 and 9 [14(®) /1, (®)} / IK(®) > 0. It is found

that spatial classification cost worsens the inverse relationship between production cost and
spatial classification. The retailer can increase the total demand by reducing the unit spatial
classification cost if the production cost is constant. As a result, it is found that if the retailer
cannot affect the potential of the product market and the producer’s costs, it can absorb higher
customer demand.

Because K| (®), K>(®) and L (®), ..., L4+(®) are positive, the optimal retail price for both
products increases with increased market potential. In addition, if L;(®) <
L,(®) < L3(®) < Ls(®), it is found that the market potential of the product has a more
significant impact on the optimal retail price. With L, (®) > L3(®) and L,(®) < L4(®), it is
found that the impact of product market potential on the retail price of a product is more
significant than the impact of the potential of the rival market.

Since Ls(®) + K3(®) > 0 and Lg(®) + K4(®) > 0, if producers can produce at a lower
cost, consumers can buy at lower retail prices. There is a positive relationship between the
optimal retail price and the market potential and between the optimal retailer

and the production cost. Since 6{L1 (®) + K, (®)/K5(®)}/6K(®) >0, 6{L5(®)+

K3(®)/K5(®)]/8K(®) -0 and 0[Ls(®) + K4(®)/K5(®)}/6K(®) > 0, the positive

relationship between the desirable retail price and the market potential improves, and with the
increase in the unit spatial classification cost, the positive impact of the production cost on
retail price reduces. Also, retailers can control the impact of market potential or production
costs on the retail price by managing spatial classification costs.

Since 0(®), ..., 04(®) are positive, an increase in market potential leads to an increase in
the demand for the product and, simultaneously, reduces the demand for the rival. With
0:1(®) > 0»(®) and 04(®) > 03(®), when the market potential of a product increases, the
total demand rises because the increase in the demand is higher than the reduction in the
demand for the rival. Retailers must increase the market potential of a product to have more
sales. Since, O5(®), ..., Qs (®) are positive, if the production cost increases, demand for that
product decreases and demand for the rival increases. An increase in production costs means
rise in the retail prices and rise in the retail prices is penalty for consumers.

By considering 0s(®) > Qs(®) and Q5(®) > 0;(®), Retailers can help the producer to
reduce production costs, which increases in demand. Additionally, the low market potential
impact of product A (or product cost B) on total demand equals Q;(®) — 0>(®) /0s(®) (or

0,(®) - 0:(®) /Q9(®))' The marginal impact of product cost A (or product cost B) on the

total demand equals to Qs(®) — Os(®) /0s(®) (or 05(®) — 07(®) /Q9(®)).With respect to

the specific amount of the budget, retailers can use it to improve the overall demand. The two
above-mentioned marginal features help the retailer choose one of two strategies: increasing
the market potential or reducing the production cost strategy.

5. Numerical example and managerial insights

This section presents a numerical example designed to illuminate the proposed model’s
multifaceted implications. Its aim is to extract actionable managerial insights by examining the
impact of various parameters within the model’s framework. First, the impact of market
potential on price and significant demand is discussed.
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To justify the analyses conducted in this paper, we provide a real-world example
demonstrating how retailers can utilize our proposed pricing and spatial classification model.
For instance, a supermarket chain can use our model to determine optimal prices for various
products, which not only maximizes profit but also optimizes shelf space utilization. As the
market potential of a product increases, the demand for that product rises, subsequently
requiring more shelf space. Conversely, a reduction in production costs can lead to lower retail
prices, which in turn increases product demand. These analyses, compared to real data from
reputable retail chains, show that our model can help retailers make optimal decisions by
considering spatial constraints and price sensitivity.

The example is investigated for different values of the market potential for products A, B
shown as a/;, . Accordingly, in Table 1, numerical results are shown for the product’s market

potential for both the retailer and producers. In Table 2, different values of the production cost
ratio of producers A and B for products A, B, have been investigated. Also, Table 3 examines
different values of the reciprocal sensitivity ratio of products A and B 6,(®) /6, (®) Tables 1—

3, [[,4(®) and [ ], ,(®) respectively, indicate retail sales of products A and B respectively.
From Table 1, the retail price of each product and the retail spatial classification increase
with an increase in the potential market share 4/}, . A more accurate analysis is shown in

Figures 1 and 2. From Figure 1, the retail price of products in the same category increases as the
market potential of one of the products in this category grows. Figure 2 shows that an increase
in the market potential ratio positively impacts product A production and hurts the demand for
product B. The total demand for this category of retailers increases, and the need to hire a more
significant classification is felt. In addition, Table 1 shows that a producer with larger market
potential has more profit than his rivals. This larger profit can be linked to the dual impact of
market potential and wholesale price.

Table 1 shows the impact of the market potential ratio on each channel member’s spatial
classification, demand, and profit under symmetric sensitivity parameters 6,(®) =
03(®) = 1. From Figure 3, in non-symmetric demand functions, a company must adopt a
mixed strategy, using the market potential and the reciprocal sensitivity of prices to achieve a
sure profit. Figure 3 shows that producer A can achieve the same profit level 2 at the points E,
E, or E5. The point £ has a potential low-to-market ratio and reciprocal sensitivity ratio related
to E, and E; with higher potential ratio to market potential and sensitive parameters. This result
indicates that a company can adopt different strategies to meet the predetermined profits.

From Table 2, a product with a higher production cost than that of a competitive product
provides less profit for the producers and retailers. This mainly relates to lower demand
resulting from wholesale prices and retail prices. Figure 4 also indicates that when the ratio of
the production cost of product A to that of product B increases, the decrease in the demand for
product A is greater than that in demand for product B, and therefore the total demand for
retailers decreases, and consequently, less space is needed. From a retail sales viewpoint, the
increased production cost less profit. From Table 2, for example, the retailer’s profit decreases
by 20%, while the production cost ratio A increases from 1 to 2. To maintain profit, producers
should reduce their production costs.

The interaction between the cost of production and the sensitivity of the price parameter is
discussed. Increasing production costs will reduce the profit for the producer. Figure 5 shows
that a producer can use a product differentiation strategy to offset the effect of increasing
production costs. As shown in this figure, when the production cost ratio rises from 0.6 to 0.8,
the producer’s profit decreases by 18%; the sensitivity ratio is 1, but only 16% when the ratio of
the parameter to the sensitivity scale is 2. This phenomenon has yet to be reflected in the
models presented in previous studies (Kurtulusand and Toktay, 2011), in which the demand
function is presented symmetrically.

According to Table 3, we realized that the retailer sets a single retail price for each product
when market potential, production costs, and the degree of symmetry of the two products are
almost symmetric. The two manufacturers set the same prices, and both products are equally



Table 1. Numerical solution results for different values of b(®) = 10, k(®) = 0.5, 64(®) = 03(®) =1

Retailer Producer A Producer B
gy, S®)  pa®  ps(®)  [a® L@  IL®  a® Wa® @) L) @ Wi®) q(®)  []:®)
0.2 2.14 8.15 8.08 4.895 4.817 10.65 1.24 2.74 4.18 6.27 2.28 3.74 1.11 1.621
0.4 2.42 8.34 9.65 5.345 6.891 10.94 1.52 2.81 4.51 5.818 2.41 3.81 1.18 1.652
0.6 2.74 8.64 10.35 5.646 7.749 11.35 1.84 3.05 4.82 5.832 2.72 4.05 1.23 1.636
0.8 2.81 9.25 10.65 6.642 8.476 11.65 1.91 3.18 5.13 6.515 3.23 4.18 1.31 1.245
1.0 3.05 9.65 10.94 7.042 8.809 11.88 2.15 3.51 5.45 7.412 3.85 4,51 1.37 0.904
1.2 3.18 10.85 11.35 8.502 9.207 12.11 2.28 4,51 5.66 12.62 4.05 4.82 1.41 1.086
1.4 3.51 11.35 11.65 9.143 9.584 12.35 2.41 4.82 5.76 13.88 4.18 5.13 1.47 1.397
1.6 3.82 12.88 12.31 11.37 10.5 12.88 2.72 5.13 5.94 14.32 4,51 5.45 1.53 1.438
1.8 4.13 14.31 12.97 13.18 10.97 13.31 3.23 5.45 6.18 13.72 4.82 6.32 1.65 2.475
2.0 4.45 14.97 13.35 14.19 11.38 14.35 3.85 6.32 6.25 15.44 5.13 6.77 1.73 2.837

Source(s): Table created by authors
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Table 2. Numerical solution results for different values of ¢4 (®) /s (@) k(®) =0.5604(®) =65(®) =1l,a=b=1

VdOSIN

Retailer Producer A Producer B
A(®)/,(®) 5(®) pa(®) pp(®) IT.A(®) IT.5(®) I1.(®) Wa(®) 44(®) IT,(®) Ws(®) 95(®) [1:(®)
0.2 1.32 4.27 441 2.51 1.28 1.93 1.35 0.86 0.99 1.66 0.46 0.28
0.4 1.29 4.30 4.41 2.26 1.36 1.97 1.46 0.89 0.84 1.66 0.50 0.33
0.6 1.26 4.34 4.40 2.02 1.43 1.65 1.57 0.73 0.71 1.70 0.53 0.38
0.8 1.23 4.36 4.40 1.78 1.50 1.52 1.69 0.67 0.59 1.75 0.56 0.43
1.0 1.20 4.40 4.40 1.56 1.56 1.40 1.80 0.60 0.48 1.80 0.60 0.48
1.2 1.17 4.43 4.39 1.38 1.62 1.28 1.91 0.54 0.38 1.85 0.63 0.54
1.4 1.14 4.46 4.39 1.15 1.68 1.17 2.03 0.47 0.29 1.89 0.67 0.60
1.6 1.11 4.50 4.39 0.95 1.73 1.07 2.14 0.41 0.22 1.94 0.70 0.66
1.8 1.08 4.53 4.39 0.77 1.78 1.97 2.25 0.34 0.15 1.95 0.74 0.73
2.0 1.04 4.56 4.39 0.65 1.83 1.88 2.37 0.28 0.10 2.03 0.77 0.80

Source(s): Table created by authors




Table 3. Numerical solution results for different values of 6, (®)/93 @) 05(®) = 0.5, k(®) = 0.5, c4(®) = c3(®) =l,a=b=5

Retailer Producer A Producer B
02 (®)/g,(®) 5(®) Pa(®) pp(®) [T.A(®) I1.5(®) I1.(®) Wa(®) 44(®) [L(®) Wp(®) 95(®) [1:(®)
0.2 0.73 4.66 4.63 0.95 1.03 1.46 1.85 0.34 0.29 1.97 0.39 0.38
0.4 0.75 4.64 4.62 1.00 1.06 1.49 1.84 0.36 0.30 1.92 0.39 0.36
0.6 0.77 4,62 4.61 1.04 1.08 1.53 1.82 0.37 0.30 1.88 0.40 0.35
0.8 0.78 4.61 4.61 1.08 1.10 1.56 1.81 0.38 0.31 1.84 0.40 0.33
1.0 0.80 4.60 4.60 1.12 1.12 1.60 1.80 0.40 0.32 1.80 0.40 0.32
1.2 0.82 4.59 4.60 1.16 1.14 1.63 1.79 0.42 0.33 1.76 0.40 0.30
1.4 0.83 4.58 4.59 1.20 1.15 1.66 1.78 0.43 0.34 1.73 0.40 0.29
1.6 0.84 4.57 4.59 1.24 1.16 1.68 1.77 0.44 0.35 1.70 0.40 0.28
1.8 0.86 4.56 4.57 1.28 1.17 1.71 1.74 0.45 0.35 1.67 0.40 0.27
2.0 0.87 4.55 4.57 1.32 1.18 1.74 1.75 0.47 0.36 1.64 0.40 0.25

Source(s): Table created by authors

suoneorddy pue
[DIeasay urey)
A1ddng uepoy




MSCRA

Retail price

Product 4

Product B

afb
1.0 1.2 14 1.6 1.8 2.0

Source(s): Figure created by authors

Figure 1. Retail sales price based on the different product ratios a,
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Figure 2. Demand rate based on the different product ratios ¢/,
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Figure 3. Profit of Producer A according to ratio ay 04(®) /93 (®)

divided into retail space classifications. This result is also seen in previous studies (Kurtulus
and Toktay, 2011).

Figure 5 illustrates the relationship between the production cost ratio of Product A to
Product B and the resulting profit for Producer A. As the production cost of Product
A increases relative to Product B, the profit for Producer A decreases, highlighting the
sensitivity of profits to changes in production costs. This figure emphasizes the need for
producers to manage production costs efficiently to maintain competitive pricing and
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Figure 4. Demand according to different ratios ¢4 (®) /es ®)
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Figure 5. Profit of producer A according to ratio ¢4 (®) /s (@) 04(®) /0, ®)

profitability. The y-axis label “Producer’s Profit” has been standardized across all figures for
consistency, aligning with the terminology used throughout the manuscript to ensure clarity
and coherence in the presentation of results.

5.1 Expanding interpretation of outcomes

The case study quantification offers tangible insights for retail leaders to inform pricing
strategy developments and inventory control frameworks applicable to their stores. The
presented analyses showcase how adjusting distinct input variables like market demand,
production costs, and sensitivity ratios creates cascading impacts on interconnected pricing,
classification, and inventory decisions. Notably, the model reveals specific change thresholds
in factors like cost fluctuations that could spur retailers to reevaluate pricing given anticipated
customer response shifts.

5.2 Emphasizing alignment to pricing dynamics research objectives

The demonstrated pricing alignments connect directly to core modeling research pursuits
around managing retail decisions despite uncertainty and constraints. In particular, the
computational incorporation of demand variability factors via grey numbers combined with
physical shelf space limitations provides a novel approach to capturing the realities retailers
face. Quantifying the subsequent interplay between dynamic pricing optimization, inventory
availability, and shelf capacities verbalizes the messy intricacies retailers encounter into an
actionable decision framework.
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5.3 Highlighting practical impacts

Retail leaders can make informed tradeoff decisions by relating case insights around the
integrated dependencies between pricing freedom, production costs, inventory holding
capacity, and classification space. When facing higher supplier quotes or transport fees
squeezing margins, store managers can reference the model operating conditions to weigh
pricing shifts accounting for higher sensitivity items and potentially lost sales from display
space limits. This mitigates blind price reactions amid volatility.

5.4 Connecting to objectives

In alignment with research goals around balancing pricing decisions amid uncertainty and
constraints, the modeled price alignments account for inherent demand fluctuations while
weighing the shelf space limits retailers’ encounter.

5.5 Implications for practice

When facing margin pressures, management can leverage integrated signals from the model to
shape data-informed tradeoff decisions between pricing, costs, turns, and capacities.
Reference table impacts help mitigate reactionary guesses.

6. Conclusions

6.1 Key findings

This paper delved into the intricate world of pricing strategies within a spatial classification
system, particularly in the context of non-symmetric market demand. The focal point of the
study was the decision-making process involving a single retailer and two producers. To tackle
the complexity of this problem, the paper introduced the utilization of double interval grey
numbers, a mathematical approach combined with game theory principles. The objective was
to determine an optimal pricing strategy that carefully balanced various factors, including
spatial classification and inventory costs.

The findings of this study provided crucial insights into the complex interplay between
product market potential, demand dynamics, and pricing strategies. A significant revelation
was a positive correlation between a product’s market potential and demand. An increase in the
market potential of a specific product had a favorable impact on the demand for that product,
but it also had a ripple effect on the demand for other products. This intriguing phenomenon
suggested that an upward shift in the demand for one product not only drove the overall
demand upwards but also had the potential to stimulate the demand for broader categories of
products.

6.2 Managerial implications

The insights from this study have significant implications for businesses navigating pricing
decisions within spatial classification systems. Retailers can leverage the model to make data-
driven pricing choices in asymmetric market contexts by quantifying interactions between
market potential, production costs, shelf space, and price sensitivity.

Furthermore, the study uncovered the intricate relationship between production costs and
product demand. As the production costs of a particular item rose, its demand decreased.
However, intriguingly, this decreases in demand for one product led to a compensatory
increase in demand for competing products. This intricate dynamic demonstrated that the
decrease in demand for one specific product was associated with a more pronounced reduction
in the need for product classification than the subsequent increase in demand for a competing
product.

Additionally, the research illuminated the positive influence of a product’s market potential
on its retail price. A product with higher market potential could command a higher retail price,



emphasizing the importance of understanding and managing market dynamics in pricing
decisions.

In the context of retailer decision-making, the study shed light on the retailer’s ability to
control and manage the impact of market potential and production costs on total demand and
retail prices. This management was achieved through carefully considering and controlling
spatial classification costs, offering the retailer a strategic lever to optimize pricing strategies.

This integrated pricing model helps retailers manage complex spatial classification and
inventory constraints. The novel game theory-based approach models the multifaceted interplay
between optimizing pricing factors, physical shelf limitations, and demand uncertainty.

As the numerical analysis demonstrates, managers can leverage the model outputs to
inform data-driven pricing decisions amid asymmetric market contexts. Quantifying
interactions between market potential, production costs, classification space, and price
sensitivity factors enables nuanced strategies to balance profit goals with realistic retail
restrictions.

Additionally, the model supports robust pricing strategies by encapsulating the inherent
uncertainty in consumer preferences and competitive environments into the grey number
inputs. The capacities unlocked by translating variability into defined grey number ranges
ensure pricing decisions are insulated from volatility.

6.3 Future research directions

While this integrated model makes several research contributions, ample opportunities remain
to build upon the approach within the retail pricing domain. Potential avenues include
incorporating behavioral aspects like reference dependence (Mazumdar et al., 2005),
expanding competitive scenarios beyond dual manufacturers, applying machine learning to
demand forecasting (Zhang et al., 2021), and implementing the model in real-world decision
support systems. Testing nonlinear demand responses, stochastic external factors, and
congestion effects also provide promising extensions to mimic retail complexity better (Ren
etal., 2019). Supply chain researchers can utilize this model’s interconnected optimization as a
foundation to explore emergent dynamics from enhanced representations of pricing,
inventory, and spatial classification factors. Future directions include incorporating
behavioral science, broadened scenarios, advanced forecasting, and real-world testing to
further build on integrated pricing, inventory, and classification optimization. For academic
researchers, opportunities abound to build upon this platform, integrating pricing, inventory,
and classification components. Model limitations around linear customer demand functions,
equally weighted supplier relationships, and deterministic deterioration rates could be
expanded upon by incorporating real-world nonlinearities, channel imbalances, and stochastic
elements. Exploring pricing decisions amid alternate competitive and collaborative paradigms
may also yield exciting dynamics.

While this integrated model makes several research contributions, ample opportunities
remain to build upon the approach within the retail pricing domain. Potential avenues include
incorporating behavioral aspects like reference dependence, expanding competitive scenarios
beyond dual manufacturers, applying machine learning to demand forecasting, and
implementing the model in real-world decision support systems. Testing nonlinear demand
responses, stochastic external factors, and congestion effects also provide promising
extensions to mimic retail complexity better. Supply chain researchers can utilize this
model’s interconnected optimization as a foundation to explore emergent dynamics from
enhanced representations of pricing, inventory, and spatial classification factors.

Future directions include incorporating behavioral science, broadened scenarios, advanced
forecasting, and real-world testing to further build on integrated pricing, inventory, and
classification optimization.

In conclusion, the insights garnered from this study are significant for businesses seeking to
navigate the intricate pricing landscape within spatial classification systems. By leveraging the
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relationships between market potential, demand fluctuations, and pricing dynamics,
companies can formulate and implement pricing strategies that align with their strategic
objectives. This study provides a comprehensive understanding of the nuanced interactions
and equips businesses with the knowledge to make informed and effective pricing decisions in
a spatial classification context.

References

Aiassi, S., Farahani, R.Z. and Dullaert, W. (2020), “Integrated pricing, inventory, and operations
planning decisions using robust optimization”, European Journal of Operational Research,
Vol. 284 No. 1, pp. 187-199.

Amelian, M., Aryanezhad, M.B. and Saidi-Mehrabad, M. (2015), “Joint optimization of pricing and
inventory management for perishable foods production”, International Journal of Production
Economics, Vol. 167, pp. 171-180.

Amelian, S.S., Sajadi, S.M., Navabakhsh, M. and Esmaelian, M. (2022), “Multi-objective optimization
for stochastic failure-prone job shop scheduling problem via hybrid of NSGA-II and simulation
method”, Expert Systems, Vol. 39 No. 2, e12455, doi: 10.1111/exsy.12455.

Amit, R.K., Mehta, P. and Tripathi, R.R. (2015), “Optimal shelf-space stocking policy using stochastic
dominance under supply-driven demand uncertainty”, European Journal of Operational
Research, Vol. 246 No. 1, pp. 339-342, doi: 10.1016/j.ejor.2015.04.031.

Bezawada, R., Balachander, S., Kannan, P.K. and Shankar, V. (2009), “Cross-category effects of aisle
and display placements: a spatial modeling approach and insights”, Journal of Marketing,
Vol. 73 No. 3, pp. 99-117, doi: 10.1509/jmkg.73.3.99.

Bianchi-Aguiar, T., Silva, E., Guimaraes, L., Carravilla, M.A. and Oliveira, J.F. (2018), “Allocating
products on shelves under merchandising rules: multi-level product families with display
directions”, Omega, Vol. 76, pp. 47-62, doi: 10.1016/j.omega.2017.04.002.

Bolton, R.N. (1989), “The relationship between market characteristics and promotional price
elasticities”, Marketing Science, Vol. 8 No. 2, pp. 153-169, doi: 10.1287/mksc.8.2.153.

Chang, C.T., Chen, Y.J., Tsai, T.R. and Shuo-Jye, W. (2016), “Inventory models with stock-and price
dependent demand for deteriorating items based on limited shelf space”, Yugoslav Journal of
Operations Research, Vol. 20 No. 1, pp. 55-69, doi: 10.2298/yjor1001055c.

Chen, X., Wy, S., Wang, X. and Li, D. (2018), “Optimal pricing strategy for the perishable food supply
chain”, International Journal of Production Research, Vol. 57 No. 9, pp. 2755-2768, doi:
10.1080/00207543.2018.1557352.

Deng, J.L. (1982), “Control problems of grey systems”, Systems and Control Letters, Vol. 1 No. 5,
pp. 288-294, doi: 10.1016/s0167-6911(82)80025-x.

Emami, A., Aryanezhad, M.B. and Saidi-Mehrabad, M. (2014), “Optimizing dynamic pricing and
inventory control policies in production systems”, International Journal of Production
Economics, Vol. 158, pp. 197-213.

Guo, S.D,, Liu, S.F. and Fang, Z.G. (2015), “Multi-objective grey target decision model based on regret
theory”, Control and Decision, Vol. 30 No. 9, pp. 1635-1640.

Hatami-Marbini, A., Tavakkoli-Moghaddam, R., Zahiri, B. and Mohammadi, M. (2020), “A novel bi-
level mathematical model for integrated inventory optimization in a three-echelon supply chain
network”, Computers and Industrial Engineering, Vol. 145, 106487.

Hoch, S.J., Kim, B.D., Montgomery, A.L. and Rossi, P.E. (1995), “Determinants of store-level price
elasticity”, Journal of Marketing Research, Vol. 32 No. 1, pp. 17-29, doi: 10.1177/
002224379503200104.

Hossack-McKey, J., Guzman, D. and José, C. (2023), “Optimized multiperiod pricing and contract
term length for storage revenue in energy and capacity markets”, Applied Energy, Vol. 316,
119353.


https://doi.org/10.1111/exsy.12455
https://doi.org/10.1016/j.ejor.2015.04.031
https://doi.org/10.1509/jmkg.73.3.99
https://doi.org/10.1016/j.omega.2017.04.002
https://doi.org/10.1287/mksc.8.2.153
https://doi.org/10.2298/yjor1001055c
https://doi.org/10.1080/00207543.2018.1557352
https://doi.org/10.1016/s0167-6911(82)80025-x
https://doi.org/10.1177/002224379503200104
https://doi.org/10.1177/002224379503200104

Huang, J., Leng, M. and Parlar, M. (2013), “Demand functions in decision modeling: a comprehensive
survey and research directions”, Decision Sciences, Vol. 44 No. 3, pp. 557-609, doi: 10.1111/
deci.12021.

Hwang, H., Choi, B. and Lee, M.J. (2005), “A model for shelf space allocation and inventory control
considering location and inventory level effects on demand”, International Journal of
Production Economics, Vol. 97 No. 2, pp. 185-195, doi: 10.1016/j.ijpe.2004.07.003.

Jamali, M.B. and Rasti-Barzoki, M. (2018), “A game theoretic approach for green and non-green
product pricing in chain-to-chain competitive sustainable and regular dual-channel supply
chains”, Journal of Cleaner Production, Vol. 170, pp. 1029-1043, doi: 10.1016/j.
jclepro.2017.09.181.

Jamshidi, M., Noori-daryan, M. and Abolhasani, M. (2021), “Applied dynamic pricing and revenue
management concepts to quantify entrepreneurial opportunities”, Journal of Cleaner Production,
Vol. 324, 128913.

Konur, D. and Geunes, J. (2016), “Supplier wholesale pricing for a retail chain: implications of
centralized vs. decentralized retailing and procurement under quantity competition”, Omega,
Vol. 65, pp. 98-110, doi: 10.1016/j.0mega.2016.01.002.

Kurtulug, M. and Toktay, L.B. (2011), “Category captainship vs. retailer category management under
limited retail shelf space”, Production and Operations Management, Vol. 20 No. 1, pp. 47-56,
doi: 10.1111/§.1937-5956.2010.01141.x.

Liu, S. and Lin, Y. (2006), Grey Information: Theory and Practical Applications, Springer Science &
Business Media, New York, Vol. 8, pp. 18-41.

Llaguno, J.P.,, Redondo, J.L. and Figueira, G. (2022), “Joint optimization of inventory, pricing, and
space allocation in supply chain management contexts”, International Journal of Production
Economics, Vol. 256, 108270.

Mahmoodi, A. and Hashemi, L. (2024), “Strategic justification of integrated resource planning tools in
organizations”, Business Process Management Journal, Vol. 8 No. 66, doi: 10.1108/EMJB-02-
2022-0034.

Mahmoodi, A., Jasemi Zergani, M., Hashemi, L. and Millar, R. (2022a), “Analysis of optimized
response time in a new disaster management model by applying metaheuristic and exact
methods”, Smart and Resilient Transportation, Vol. 4 No. 1, pp. 22-42, doi: 10.1108/SRT-01-
2021-0002.

Mahmoodi, A., Hashemi, L., Laliberté, J. and Millar, R.C. (2022b), “Secured multi-dimensional robust
optimization model for remotely piloted aircraft system (UAVS) delivery network based on the
SORA standard”, Designs, Vol. 6 No. 3, p. 55, doi: 10.3390/designs6030055.

Mahmoodi, A., Hashemi, L. and Jasemi, M. (2023a), “Develop an integrated candlestick technical
analysis model using meta-heuristic algorithms”, EuroMed Journal of Business, Vol. 3 No. 11,
doi: 10.1108/EMJB-02-2022-0034.

Mahmoodi, A., Hashemi, L., Jasemi, M., Mehraban, S., Laliberte, J. and Millar, R.C. (2023b), “A
developed stock price forecasting model using support vector machine combined with
metaheuristic algorithms”, Opsearch, Vol. 60 No. 1, pp. 59-86, doi: 10.1007/s12597-022-
00608-x.

Mahmoodi, A., Hashemi, L., Laliberte, J., Millar, R.C. and Meyer, R.W. (2024), “Revolutionizing
RPAS logistics and reducing CO2 emissions with advanced RPAS technology for delivery
systems”, Cleaner Logistics and Supply Chain, Vol. 12, 100166, doi: 10.1016/j.
clscn.2024.100166.

Mahmoudi, A. and Piri, M. (2013), “An innovative methodology to make a questionnaire positive
definite by the statistical software of SPSS”, Middle-East Journal of Scientific Research, Vol. 13
No. 9, pp. 1267-1274.

Malekpour, S., Aryanezhad, M.B. and Saidi-Mehrabad, M. (2016), “Joint optimization of inventory
levels and production schedules using mixed integer linear programming”, Computers and
Industrial Engineering, Vol. 99, pp. 1-14.

Modern Supply
Chain Research
and Applications



https://doi.org/10.1111/deci.12021
https://doi.org/10.1111/deci.12021
https://doi.org/10.1016/j.ijpe.2004.07.003
https://doi.org/10.1016/j.jclepro.2017.09.181
https://doi.org/10.1016/j.jclepro.2017.09.181
https://doi.org/10.1016/j.omega.2016.01.002
https://doi.org/10.1111/j.1937-5956.2010.01141.x
https://doi.org/10.1108/EMJB-02-2022-0034
https://doi.org/10.1108/EMJB-02-2022-0034
https://doi.org/10.1108/SRT-01-2021-0002
https://doi.org/10.1108/SRT-01-2021-0002
https://doi.org/10.3390/designs6030055
https://doi.org/10.1108/EMJB-02-2022-0034
https://doi.org/10.1007/s12597-022-00608-x
https://doi.org/10.1007/s12597-022-00608-x
https://doi.org/10.1016/j.clscn.2024.100166
https://doi.org/10.1016/j.clscn.2024.100166

MSCRA

Martin-Herran, G., Taboubi, S. and Zaccour, G. (2006), “The impact of manufacturers’ wholesale
prices on a retailer’s shelf-space and pricing decisions”, Decision Sciences, Vol. 22 No. 2,
pp- 22-20.

Mazumdar, T., Raj, S.P. and Sinha, 1. (2005), “Reference price research: review and propositions”,
Journal of Marketing, Vol. 69 No. 4, pp. 84-102, doi: 10.1509/jmkg.2005.69.4.84.

Millar, R.C., Hashemi, L., Mahmoodi, A., Meyer, R.W. and Laliberte, J. (2023), “Integrating
unmanned and manned UAVs data network based on combined Bayesian belief network and
multi-objective reinforcement learning algorithm”, Drone Systems and Applications, Vol. 11,
pp. 1-17, doi: 10.1139/dsa-2022-0043.

Millar, R., Laliberté, J., Mahmoodi, A., Hashemi, L., Meyer, R.W. and Laliberte, J. (2024), “Designing
an uncrewed aircraft systems control model for an air-to-ground collaborative system”, SAE
International Journal of Aerospace, Vol. 17 No. 2, pp. 225-241, doi: 10.4271/01-17-02-0014.

Miranzadeh, M.B., Aryanezhad, M.B. and Saidi-Mehrabad, M. (2015), “An optimization model for
inventory management in supply chains with multiple suppliers and retailers”, European Journal
of Operational Research, Vol. 245 No. 1, pp. 100-110.

Mishra, P.K. and Singh, A. (2021), “An integrated inventory model for deteriorating items with price
and promotional effort dependent demand under permissible delay in payments”, Journal of
Industrial Engineering International, Vol. 17 No. 4, pp. 715-726.

Park, J., et al (2022), “Impacts of blockchain technology on pricing and ordering decisions in retail
operations”, Sustainability, Vol. 14 No. 12, p. 7379.

Reisi, M., Gabriel, S.A. and Fahimnia, B. (2019), “Supply chain competition on shelf space and pricing
for soft drinks: a bi-level optimization approach”, International Journal of Production
Economics, Vol. 211, pp. 237-250, doi: 10.1016/j.ijpe.2018.12.018.

Ren, S., Chan, H.L. and Siqin, T. (2019), “Demand forecasting in retail operations for fashionable
products: methods, practices, and real case study”, Annals of Operations Research, Vol. 291 Nos
1-2, pp. 1-20, doi: 10.1007/s10479-019-03148-8.

Reyes, P.M. and Frazier, G.V. (2007), “Goal programming model for grocery shelf space allocation”,
European Journal of Operational Research, Vol. 181 No. 2, pp. 634-644, doi: 10.1016/j.
€jor.2006.07.004.

Sajadi, S.M. and Noori-daryan, M. (2011), “Presenting a mathematical model for optimization of
pricing and inventory decisions in production planning”, International Journal of Production
Economics, Vol. 132 No. 2, pp. 236-243.

Rong, A., Hongfu, H. and Dong, L. (2020), “Quality and efficiency management in food supply chain:
a framework via optimization methodology”, Omega, Vol. 93, 102072.

Sajadi, S.M., Bozorgi-Amiri, A. and Noori-Daryan, M. (2016), “Incorporating pricing and inventory
decisions in a production planning model under uncertainty”, International Journal of
Production Economics, Vol. 177, pp. 84-99.

Singha, K., Buddhakulsomsiri, J. and Parthanadee, P. (2017), “Mathematical model of inventory policy
under limited storage space for continuous and periodic review policies with backlog and lost
sales”, Mathematical Problems in Engineering, Vol. 2017 No. 1, doi: 10.1155/2017/4391970.

Soni, G., Lin, F. and Ya-Lan, C. (2020), “Coordination policy for pricing and lot-sizing with advance
payment under trade credit financing for perishable products”, International Journal of Systems
Science: Operations and Logistics, Vol. 7 No. 4, pp. 358-367.

Soni, H.N. and Suthar, D.N. (2018), “Pricing and inventory decisions for non-instantaneous
deteriorating items with price and promotional effort stochastic demand”, Journal of Control and
Decision, Vol. 6 No. 3, pp. 191-215, doi: 10.1080/23307706.2018.1478327.

Sun, H., Chiu, C. and Fang, S. (2022), “Coordination mechanism for inventory control in decentralized
supply chains”.

Tao, F., Fan, T., Wang, Y.Y. and Lai, K.K. (2019), “Joint pricing and inventory strategies in a supply
chain subject to inventory inaccuracy”, International Journal of Production Research, Vol. 57
No. 9, pp. 1-20, doi: 10.1080/00207543.2019.1579933.


https://doi.org/10.1509/jmkg.2005.69.4.84
https://doi.org/10.1139/dsa-2022-0043
https://doi.org/10.4271/01-17-02-0014
https://doi.org/10.1016/j.ijpe.2018.12.018
https://doi.org/10.1007/s10479-019-03148-8
https://doi.org/10.1016/j.ejor.2006.07.004
https://doi.org/10.1016/j.ejor.2006.07.004
https://doi.org/10.1155/2017/4391970
https://doi.org/10.1080/23307706.2018.1478327
https://doi.org/10.1080/00207543.2019.1579933

Talluri, K.T. and Van Ryzin, G.J. (2006), The Theory and Practice of Revenue Management, Springer
Science & Business Media, New York, Vol. 7, pp. 26-48.

Tellis, G.J. (1988), “The price elasticity of selective demand: a meta-analysis of econometric models of
sales”, Journal of Marketing Research, Vol. 25 No. 4, pp. 331-341, doi: 10.2307/3172944.

Umut, O., Ahmad, T. and Shahroukh, K. (2023), “Optimal pricing of wholesale electricity contracts”,
Renewable Energy, Vol. 198, pp. 1144-1161.

Urban, T.L. (2005), “Inventory models with inventory-level-dependent demand: a comprehensive
review and unifying theory”, European Journal of Operational Research, Vol. 162 No. 3,
pp. 792-804, doi: 10.1016/j.ejor.2003.08.065.

Wang, S.Y., Sheen, G.J. and Yeh, Y. (2015), “Pricing and shelf space decisions with non-symmetric
market demand”, International Journal of Production Economics, Vol. 169, pp. 233-239, doi:
10.1016/j.ijpe.2015.08.012.

Wang, L., Zing, 1. and Wang, H. (2022), “Pricing and coordination in fresh product supply chains”,
Journal of Cleaner Production, Vol. 344, 130603.

Zhang, L., Samg, H. and King, L. (2019), “Pricing and inventory management in fresh produce retail
stores”, European Journal of Operational Research, Vol. 278 No. 2, pp. 508-521.

Zhang, C., Wu, F.,, Gao, C., Lv, L. and Zhao, X. (2021), “Demand forecasting in retail operations for
perishable products with price discounts and consumer preferences: a data-driven optimization
approach”, Annals of Operations Research, Vol. 11 No. 2, pp. 1-34.

Zhou, G., Min, H. and Gen, M. (2003), “A genetic algorithm approach to the bi-criteria allocation of
customers to warehouses”, International Journal of Production Economics, Vol. 86 No. 1,
pp. 35-45, doi: 10.1016/50925-5273(03)00007-0.

Supplementary material
The supplementary material for this article can be found online.

Corresponding author
Armin Mahmoodi can be contacted at: im.mahmodi@yahoo.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Modern Supply
Chain Research
and Applications



https://doi.org/10.2307/3172944
https://doi.org/10.1016/j.ejor.2003.08.065
https://doi.org/10.1016/j.ijpe.2015.08.012
https://doi.org/10.1016/s0925-5273(03)00007-0
mailto:im.mahmodi@yahoo.com

	Pricing in spatial classification system in non-symmetric market demand based on the calculations of double interval grey n ...
	Introduction
	Grey number definition
	Elaborating on price sensitivity dynamics

	Literature review
	Model distinctiveness and literature contributions

	Materials and methods
	Calculation of dual interval grey numbers
	The regret theory based on probable conflict states
	Selection and ordering of the expression of double interval grey numbers in different states

	Modeling
	Decisions on retail prices
	Decision on the wholesale price
	Decision on the size of retail spatial classification


	An analytic study of parameters
	Numerical example and managerial insights
	Expanding interpretation of outcomes
	Emphasizing alignment to pricing dynamics research objectives
	Highlighting practical impacts
	Connecting to objectives
	Implications for practice

	Conclusions
	Key findings
	Managerial implications
	Future research directions

	References
	Supplementary materialThe supplementary material for this article can be found online.


