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Abstract

Purpose – The accurate valuation of second-hand vessels has become a prominent subject of interest among
investors, necessitating regular impairment tests. Previous literature has predominantly concentrated on
inferring a vessel’s price through parameter estimation but has overlooked the prediction accuracy. With the
increasing adoption of machine learning for pricing physical assets, this paper aims to quantify potential
factors in a non-parametric manner. Furthermore, it seeks to evaluate whether the devisedmethod can serve as
an efficient means of valuation.
Design/methodology/approach – This paper proposes a stacking ensemble approach with add-on
feedforward neural networks, taking four tree-driven models as base learners. The proposedmethod is applied
to a training dataset collected from public sources. Then, the performance is assessed on the test dataset and
compared with a benchmark model, commonly used in previous studies.
Findings – The results on the test dataset indicate that the designed method not only outperforms base
learners under statistical metrics but also surpasses the benchmark GAM in terms of accuracy. Notably, 73%
of the testing points fall within the less-than-10% error range. The designedmethod can leverage the predictive
power of base learners by incrementally adding a small amount of target value through residuals and
harnessing feature engineering capability from neural networks.
Originality/value –This papermarks the pioneering use of the stacking ensemble in vessel pricingwithin the
literature. The impressive performance positions it as an efficient desktop valuation tool for market users.

Keywords Second-hand dry bulk vessel valuation, Maritime economics, Machine learning, Neural network,

Stacking

Paper type Research paper

1. Introduction
Research into second-hand vessel pricing has been well-developed in the past 2 decades.
Many econometric models have been applied to explain the relationship between the
endogenous or exogenous variables and the price itself. However, these papers tend to use
benchmark or adjusted time-series data and rarely assess the accuracy and robustness of the
methods in predicting actual prices. This paper focuses on real transactions and develops an
efficient desktop valuation workflow that can accurately price the fair market value. Finally,
it investigates the accuracy of predicted values on the test dataset from 2014 to 2022.

The second-hand vessel market thrives on price fluctuations (Stopford, 2009). The banks
who lend against the mortgage on the purchased vessels often require a certified value of their
collaterals over the life of their loan to keep the borrower maintaining the value level of their
assets. Leasing houses typically need to estimate the future remaining value of the vessel when
the period ends. Companies that are prepared for an Initial public offering (IPO) or draw up
vessel-backed securities generally need a fair market value of the fleet. These contemporary
demands underscore the necessity for a precise and efficient method to cater to the frequent
needs of valuation.
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Earlier studies attempted to model historical data and determine the influence of relevant
variables on second-hand prices. Charemza and Gronicki (1981) propose equations for both
supply and demand to adjust ship prices based on the freight rate and other shipping activities.
Haralambides et al. (2004) fit a theoretical error correction model to construct an equilibrium
function, suggesting that the demand for second-hand vessels is determined by the time charter
rate, newbuilding price, and financing cost. Simultaneously, the supply side is expressed as the
ratio of the order book to the fleet. The empirical result shows that newbuilding price and time
charter rate have the most substantial effect. This finding is also discussed by Fan et al. (2021)
through the cox proportional hazards model, which states that second-hand prices are more
sensitive to expected revenue than cost. There are also opposing views on the equilibrium
theory. Beenstock (1985) emphasises that the traditional supply and demand theory does not
apply to vessel pricing because a ship is an asset with a very long lifespan, contrasting the
equations derived from freight rate andmarket activity posed byCharemza andGronicki (1981).

To address the non-linear relationship between the price and related predictors,�Adland and
Koekebakker (2007) applied a non-parametric multivariate density estimation (MDE) model to
the second-hand Handysize prices. This approach is designed with three factors: age,
deadweight and 1-year time charter rate, as the properties of the MDE’s approach tend to
deteriorate when considering more variables. The empirical results indicate that, although the
non-parametricmodel attempts to capture non-linearity, it cannot perfectly fit real vessel prices
due to other factors, such as engine type and country of the shipyard.�Adland et al. (2018) found
that sale price and energy efficiency exhibit a negative relationship under the same market
conditions and with identical vessel specifications. This negative relationship is less intense in
the booming dry bulk market from 2003 to 2008 than in other periods. In the exploration of the
best timing of investment and divestment to create trading strategies in the second-hand
market, Kalouptsidi (2014) illustrates that themost significant investment volatility is observed
when the time to build declines and is more volatile than a constant time to build. These
findings provide evidence that, for certain specific independent variables, the inconsistent effect
necessitates the use of a non-linear model to explain the varying levels of influence.

The employment of the stacking method with an add-on neural network has received
increased interest in asset valuation. According to Mohammed and Kora (2023), the
effectiveness of ensemble methods is contingent upon various factors, such as the training of
baseline models and how they are integrated. Additionally, in forecasting U.S. market excess
return, a simple ensembling structure can outperform models like mallows model averaging,
complete subset regression and elastic net regression (Zhao and Cheng, 2022). From the wide
application, the stacking method with add-on neural networks alleviates the constraints of
multi-collinearity or the manual judgement in the addition of interaction terms, which
classical statistical methods may encounter.

The rest of this paper is structured as follows: Section 2 clarifies the data source for this paper
and outlines the initial data handling beforemodel fitting, while Section 3 describes themachine
learning and benchmarkmodels involved. Section 4 presents the results, focussing on accuracy
and robustness. The conclusion and the future improvement are discussed in Section 5.

2. Data
Regarding feature selection, while factors like charter rate and age are known to impact
prices, other variables may be contentious due to data limitations or methodology applied.
Previous studies suggest that time charter rates have a significant impact on ship prices
(Stopford, 2009). They suggest that when these rates are high, a five-year-old ship typically
values at four to six times its annual earnings. Other factors such as age and scrap prices are
also considered. Corrosive cargoes or inadequate maintenance can shorten a ship’s economic
lifespan. If a ship’s market value falls below its scrap value, it is typically sold for scrapping.
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Given the recent trend towards green technology, the value of extra green onboard
installations is also considered in this paper.

The drybulk carrier sales data used in this article are obtained and then collated fromvarious
shipbrokers’ public weekly reports published on the Hellenic Shipping News (2022) Website
including Allied Shipbroking, Intermodal, Xclusiv and Advanced Shipping and Trading. In
practice, a single transaction reported by several shipbrokers has a higher confidence level,while
it is also possible that a record is only mentioned by one broker. For the sake of achieving low
data bias, the transactions reported by more than two brokers are included in this paper. The
period of the raw data ranged from 01/01/2014 to 31/12/2022, containing 3667 raw records.

The deadweight threshold selected for this paper is greater than or equal to 25,000 dwt,
contrastingwith someof the previous journals focussing only on specific subsectors.The rationale
behind this all-size range selection is that in the seaborn market, these neighbour sub-sectors
normally are substitute choices that could be compared by the chartering parties. In practice,
Panamax bulk carrier is commonly chosen to carry iron ore when its freight rate becomes more
attractive than Capesize and sometimes even the Handysize carriers can be used to ship iron ore.

A vessel’s technical specifications include continuous variables such as deadweight, age at
sale and categorical variables like country of build, scrubber installation, eco-design and ballast
water treatment installation, all of which are extracted from the brokers’ comments for this
paper. A vessel’s market-related indicators include the 1-year time charter rate, newbuilding
price, scrap price and the 3-month London interbank offered rate (libor) at the time of sale. In
this paper, for the sake of value consistency, the benchmark 1-year time charter rate and
newbuilding price are collated based on the popular time-series from brokers, including: Very
Large Ore Carrier (VLOC) (400 k ± 2.5%), Newcastlemax (208 k ± 2.5%), Capesize (170 k/180
k ± 2.5%), Kamsarmax (82 k ± 2.5%), Panamax (75 k ± 2.5%), Ultramax (58 k ± 2.5%) and
Handy (32 k/38 k ± 2.5%).

Specifically, the scrap price is calculated by the product of light displacement tonnage and
the steel scrap price ($/LDT). After collation and cleaning, the clean dataset was reduced from
3,667 to 3,643 records after removing the auction or bloc sales. Table 1 shows the descriptive
statistics of the variables. Since the status of scrubber-fitted or eco-design tends to impact
1-year time charter rate under various market circumstances, together with the newbuilding
price, they will be considered only as benchmark variables in the model fitting phase.

Data partitioning is an art of work that needs to consider the bias, variance and computing
burden (James et al., 2013). Large training datasets always come with a low bias, high
variance and more computing time (Hastie et al., 2009). Besides this fact, a more complex
model could also lead to high variance and potential overfitting issues, which may generate
big testing errors for a new dataset. In this paper, with 10 features and 3643 transaction
records, the dataset can be classified as having a small input size. Therefore, following the
convention in practice, it is randomly divided into 70% training data and 30% test data, as
suggested by Afshin et al. (2018).

3. Method
This sector is structured into three parts. The first part covers the applied supervised
machine learning methods, which include four tree-based learners and an add-on neural
network, along with the final stacking process. The second part focuses on generalised
additive models (GAMs) as the benchmark method. Lastly, the third part delves into model
evaluation measurements.

3.1 Applied supervised machine learning methods
3.1.1 Random forest. To overcome the overfitting issue faced by a single decision tree, a
random forest is employed as a collection of multiple random decision trees, significantly
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reducing sensitivity to the training data. This is achieved by utilising bootstrapping
(sampling with replacement) during sampling, ensuring that training datasets for each tree
are less correlated and less sensitive to the original training data (James et al., 2013). Random
feature selection further reduces the correlation between the trees, enhancing the diversity.
The finding of Breiman (2001) demonstrates that aggregating several trees produces more
precise results when using a bootstrapped sample.

3.1.2 Stochastic gradient boosting. In Gradient Boosting (GBoost), trees are created
sequentially, and themethod ismore robust to overfitting due to its learning rate η, i.e., scaling
rate. The data is denoted as fðxi; yiÞgni¼1 where xi refers to all the features of a single sample
while yi refers to the value of the response variable and n is the number of samples. In this
paper, the loss function is defined as

Lðyi;FðxÞÞ ¼ 1

2
ðyi � FðxÞÞ2 (1)

whereFðxÞ is the predicted value. The first step is to initialise themodel with a constant value
F0ðxÞwhich minimises the value of the loss function through Equation (2).

F0ðxÞ ¼ argminγ
Xn

i¼1

Lðyi;FðxÞÞ (2)

where F0ðxÞ is the initial value and it’s typically equal to the average of the values of the
response variable. The second step is to build the sequential decision trees using a loop that
handles pseudo residuals rim shown in Equation (3), rather than the original values. The
number of decision trees is denoted asm and the model starts from the first tree, i.e., m ¼ 1.

Variable name Symbol Minimum Mean Maximum

Numerical
Variables

Price ($ Mn) price 1.50 13.62 61.00
1 Year Time Charter Rate ($k/Day)
Benchmark*

tc 3.56 13.59 38.00

Newbuild Price ($ Mn) Benchmark nb 19.50 28.83 69.03
Scrap Price ($ Mn) Benchmark scrap 1.47 4.78 18.62
Deadweight (tonne) dwt 25,000 68,860 234,000
Age at sale age 0.00 11.31 30.00
3 month US Dollar LIBOR libor 0.11 1.15 4.77

Variable name Category Symbol Value
Percentage

(%)

Dummy
Variables

Country of build Japan country_jp 1 58.9
China country_cn 1 26.8
South Korea country_kr 1 8.6
Other country_o 1 5.7

Scrubber Installation No scrubber 0 93.6
Yes 1 6.3

Ballast water treatment
installation

No bwts 0 80.4
Yes 1 19.6

Eco No eco 0 99.1
Yes 1 0.9

Note(s): * Linear interpolation is applied based on the deadweight difference with neighbouring benchmarks
for those not falling into the popular benchmarks
Source(s): Table by the author; data collected and collated from Hellenic Shipping News (2022)

Table 1.
Descriptive statistics of
the numerical and
dummy variables
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rim ¼ −

�
vLðyi;Fm−1ðxiÞÞ

vFm−1ðxiÞ
�
for i ¼ 1 . . . n (3)

Like a normal regression decision tree, those pseudo residuals will fall into the terminal leave
nodes Rj;mwhere j represents the index of leaf in a tree andm is the index of the tree. For each
terminal region, the optimal γ needs to be found that couldminimise the loss function through
Equation (4). Fm−1ðxiÞ is the previous predicted value.

γjm ¼ argminγ
X

Lðyi;Fm−1ðxiÞ þ γÞ xi ∈Rij (4)

After optimal γjm is obtainedwhich is also a pseudo residual, the new predicted value could be
updated by adding the previous predicted value Fm−1ðxiÞwith the product of learning rate η
and γjm as shown in Equation (5).

FmðxÞ ¼ Fm−1ðxÞ þ η
Xn

i¼1

γjm xi ∈Rij (5)

When the first loop (from Equations (3)–(5)) is finished, the second loop will continue to
progress as the above steps stated to create another tree using new pseudo residuals until the
last tree is fitted and the FM ðxÞ is the final predicted value for that sample.

3.1.3 Extreme Gradient Boosting. Extreme gradient boosting (XGBoost) was first
introduced by Chen and Guestrin (2016) and like GB, the trees are also fitted in sequence
based on the pseudo residual shown in Equation (3). The loss function for XGBoost combines
the loss function for GBoost with the regularisation term 1

2
λO2

Value as shown in Equation (6).

Lðyi; piÞ ¼
Xn

i¼1

Lðyi; pi−1 þ OValueÞ þ γT þ 1

2
λO2

Value (6)

The goal is to find the output value OValue that can minimise this loss function. The notations
pi and pi−1 represent the current and previous predicted values, respectively. The threshold γ
and number of leaves T are used to encourage tree pruning and prevent overfitting.
Moreover, λ is included also as a regularisation factor, where a larger value results in a smaller
output value to prevent overfitting.

In practice, the second order Taylor approximation shown in Equation (7) is used to
substitute Lðyi; pi−1 þ OValueÞ to ease the calculation.

Lðyi; pi−1 þ OValueÞ≈Lðyi; pi−1Þ þ
�
d

dpi
Lðyi; pi−1Þ

�
OValue þ 1

2

"
d2

dp2i
ðyi; pi−1Þ

#
O2

Value (7)

By adding and solving the loss function for each observation, the output value and the
similarity score are calculated as Equations (8) and (9).

OValue ¼ −

�
d
dp1

Lðy1; p1Þ þ d
dp2

Lðy2; p2Þ þ . . .þ d
dpn

Lðyn; nÞ
�

�
d2

dp2
1

ðy1; p1Þ þ d2

dp2
2

ðy2; p2Þ þ . . .þ d2

dp2n
ðyn; pnÞ þ λ

� (8)

Similarity Score ¼
�

d
dp1

Lðy1; p1Þ þ d
dp2

Lðy2; p2Þ þ . . .þ d
dpn

Lðyn; nÞ
�2�

d2

dp2
1

ðy1; p1Þ þ d2

dp2
2

ðy2; p2Þ þ . . .þ d2

dp2n
ðyn; pnÞ þ λ

� (9)

The gain is calculated by subtracting the sum of the similarity score of two leaves and the
previous node, which is used to find the best split threshold. Like the process in GB, once the
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first loop (from Equations (7)–(9)) concludes, the second loop iterates through the same steps
to build another tree using new pseudo residuals, until the last tree is fitted. The final
predicted value is represented by FM ðxÞ shown in Equation (5).

3.1.4 CatBoost. Developed by Yandex in 2017, CatBoost is believed to be another tree-
based member of the gradient boosting family, which is especially highly capable of
handling categorical values. To reduce the chance of overfitting, a common issue in GB,
Liudmila et al. (2019) suggests a weighted sampling method named minimal variance
sampling (MVS) in Catboost for efficient feature splitting. In other words, for each
iteration, the features are selected that can maximise each tree’s accuracy, but the speed is
slower than the XGBoost.

3.1.5 Stacking with feedforward neural network. The stacking algorithms typically
leverage the strengths of the trained models, and select a meta-learner (Boehmke and
Greenwell, 2019). The meta-learner is designed to combine the strength of each model and
minimise the relative weakness (Reid and Grudi�c, 2009). To mitigate the issue of overfitting,
the paper employs a regularised linear model – Lasso as the meta-learner (Li et al., 2021).

As a versatile structure, feedforward neural network (FNN) can effectively fit data with
even two hidden layers to approximate a continuous function (Paluzo-Hidalgo et al., 2020),
according to the universal approximation theorem (Hornik, 1991; Lewicki and Marino, 2003).

An advantage of FNN is the feature engineering through sequential layers rather than
manually trying numerous combinations (Heaton, 2016). The add-on FNN in this paper is
constructed by reducing half of the number of neurons for the next hidden layer and applying
batch normalisation every two layers. Figure 1 represents the construction of the stacking
workflow and the simple FNN.

3.2 Benchmark generalised additive models (GAMs)
The GAM is chosen as the benchmark method in this paper because it can recognise non-
linear relationships and consider interactions within variables through smooth functions
(M€uller, 2011), akin to feature selection on each node in tree methods and neuron handling
various activation functions in neural networks. Moreover, it relaxes the prerequisite
assumptions of the general linearmodel, such as the normality of residuals, constant variance
of residuals and even the independence of observations.

Training Dataset

Basket of Neural Networks Random 
Forest

Extreme 
Gradient 
Boos ng

Gradient 
Boos ng CatBoost

Meta Regressor 
(Lasso)

Predic on

Predic on Valida on
Yes/No

Final 
Predic on

Hyperparameters for Neural Network
Loss Func on: MAE

Neurons in Hidden Layers: 128-64-64-64-1
Batch Size: 64; Valida on Split: 0.1
Epochs: 100; Learning Rate: 0.001

Ac va on Func on:  relu

Source(s): Figure by the author

Figure 1.
Stacking workflow
involving neural
network models

MABR
9,2

150



In the previous literature, traditional statistical GAM has yielded good results given its
flexible characteristics. K€ohn (2009) finds that GAM effectively identify the non-linear
relationship between ship price with predictors. A chemical tanker pricing model proposed

by (�Adland and K€ohn, 2018) suggests that GAM is a suitable function for capturing asset-
specific factors. The GAM is structured as in Equation (10) where β0 is the intercept and n is
the number of predictor variables. fnðxnÞ represents the smooth function of xn and gðEðyiÞÞ is
the link function that connects the expected value of the target variable yi to a linear
combination of the non-linear functions of xn.

gðEðyiÞÞ ¼ β0 þ f1ðx1Þ þ f2ðx2Þ . . .þ fnðxnÞ (10)

3.3 Model evaluation
In the first half of this section, mean squared error (MSE), mean absolute error (MAE) and R2

are employed to measure the fitness of the models. The second half utilises Shapley additive
explanations (SHAP) to evaluate the features importance.

R2 represents the percentage of the variance in target variable that is explained by the
features in the fittedmodel. Its value ranges from0 to 1, with a higher value indicating a better
fitness. MSE calculates the average of the squared differences between actual and predicted
values, while MAE calculates the average of the absolute differences. Both MSE and MAE
measure how far the models predicted values are from the actual ones. Those three
measurements are shown in the following equations, where yi is the actual target value, yi is
the mean of actual target value and byi is the predicted target value.

R2 ¼ 1�
Pn

i¼1ðyi � byiÞ2Pn

i¼1

�
yi � yi

�2
(11)

MSE ¼ 1

n

Xn

i¼1

ðyi � byiÞ2 (12)

MAE ¼ 1

n

Xn

i¼1

jyi � byij (13)

SHAP provides convenience in breaking down the contribution of each feature to the
prediction by considering all possible coalitions of features.

wmðvÞ ¼
1

p

XS
1

vðS ∪ fmgÞ � vðSÞÞ�
p� 1
kðSÞ

� ;m ¼ 1; 2; ; . . . p (14)

The SHAPvalue is calculated as in Equation (14), vðS ∪ fmgÞ is the value after featurem joins
sub-set S, kðS) is the size of S and p is the number of features.

4. Empirical analysis
4.1 Application of the models
After fitting the models on the training dataset, the predictions are made using the given
features and the performance is illustrated by the breakdown of the prediction errors shown
in Figure 2. From the results, 47% of the stacking method test errors fall within the
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less-than-5% error band and 73% are within less-than-10%, demonstrating superior
performance compared to other base learners and the benchmark GAM.

Figure 3 illustrates the cross-validation (k 5 10) chart based on MAE, indicating that
the model fitting improves with the inclusion of more data. Specifically, the dataset is split
into 10 times, with 9 folds used as the training dataset and the remaining 1-fold used for
testing. The MAE for all the models improves as more data is added. Therefore, the length
of the training dataset can be extended in future applications under current
hyperparameters.

4.2 Evaluation of the model’s fitness
In Table 2, performance metrics (MAE, MSE and R2) are compared for different models
using a 70–30% data split. The stacking method outperforms four base learners and a

Figure 2.
Distribution of
prediction errors on the
test dataset

Figure 3.
10-k cross-validation
charts from machine
learning models
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benchmark model, showing the smallest prediction errors (MAE: 0.9627, MSE: 2.54754)
and the highest R2 (0.96338) on the test dataset. The 70–30% split method proves optimal
among three splitting plans, indicating that the proposed model effectively learns from
more data, potentially improving generalisation. Subsequent analysis will be based on
this plan.

Furthermore, Figure 4 displays a comparison of the predicted values with the actual
values on both the training and test datasets. Consistent with the MSE and MAE values in
Table 2, GB and Extreme Gradient Boosting (XGB) all show two relatively thinner quasi-blue
lines representing the predicted values on training dataset, contrastingwith the dispersed red
points on test dataset nearby. The Quantile-Quantile (QQ)-plot of training residuals from the
GB even indicates a departure from a normal distribution. In practice, it is preferable to
observe a close dispersion both in the training and test datasets (Boehmke and Greenwell,
2019). Fortunately, the ensemble construction provides the opportunity to incorporate base
learners such as Random Forest (RF) and CatBoost that do not suffer from overfitting issues.
The benchmark GAM displayed the highest variety under all three metrics.

4.3 Evaluation of the feature importance
Figure 5 shows the feature importance using the stacking ensemble on the training dataset,
where each dot represents a single sample. The horizontal axis displays the SHAP value, and
the colour density illustrates whether the value of this feature is large or small.

From Figure 5, the long right tail of the newbuilding price suggests that a higher
newbuilding price has more influence than the 1-year time charter rate. This relationship also
holds for the age at sale; Both old and young ages can have the greatest effect on the vessel’s
pricing. The variables, such as newbuilding price benchmark, 1-year time charter rate
benchmark, scrap price and deadweight, exhibit a higher positive contribution to the price,
while the age at sale has a negative effect. This aligns with previous studies on practical
valuation methods (�Adland and K€ohn, 2018; Stopford, 2009), as well as Pruyn et al. (2011),
who point out that the newbuilding price is also a significant predictor in pricing a vessel. For
variables such as Japan-built, scrubber-installed and eco-design, which may have an

Training/test dataset: 70–30% Training/test dataset: 60–40%

Base learners
Meta
learner

Bench-
mark Base learners

Meta
learner

Bench-
mark

RF GB XGB CatBoost Stacking GAM RF GB XGB CatBoost Stacking GAM

Training
MAE

0.70154 0.37991 0.41722 0.46168 0.43706 1.36310 0.70563 0.43931 0.45577 0.47990 0.45620 1.39216

Test MAE 1.24579 1.03017 1.07755 0.97881 0.96270 1.50149 1.25653 1.05379 1.08361 0.98311 0.97197 1.50892
Training MSE 0.92544 0.36585 0.30289 0.36945 0.34814 3.79013 0.93198 0.49329 0.35565 0.40144 0.37481 3.94446
Test MSE 3.63813 2.71538 3.03371 2.63263 2.54754 5.29204 3.72530 2.85965 3.20808 2.77902 2.64387 5.44161
Training R
Squared

0.98597 0.99445 0.99541 0.99440 0.99472 0.94162 0.98584 0.99251 0.99460 0.99390 0.99431 0.94009

Test R
Squared

0.94818 0.96165 0.95639 0.96215 0.96338 0.92392 0.94770 0.95889 0.95581 0.96076 0.96266 0.92315

Training/test dataset: 50–50%
Base learners Meta learner Bench-mark

RF GB XGB CatBoost Stacking GAM

Training MAE 0.70576 0.46162 0.46868 0.51 344 0.46760 1.40881
Test MAE 1.26267 1.06490 1.08805 0.99500 0.97412 1.53278
Training MSE 0.93900 0.51414 0.37927 0.45142 0.39451 4.06723
Test MSE 3.86655 3.15064 3.29724 3.11162 2.96726 5.88229
Training R Squared 0.98554 0.99208 0.99416 0.99305 0.99392 0.93833
Test R Squared 0.94739 0.95778 0.95470 0.95830 0.96023 0.92117

Source(s): Table by the author

Table 2.
Predicted errors of RF,

GB, XGB, CatBoost,
Stacking and GAM
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incomplete data collection issue, they all demonstrate an intuitive result, typically
commanding a positive premium compared to vessels built in China or other places. It is
worth noting that deadweight provides a mixed contribution except the big values. Although
itmay initially seemdifficult to interpret, this aspect actually highlights another advantage of

Figure 4.
Predicted versus actual
values
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Machine Learning (ML) methods compared to traditional coefficient inference methods,
which often rely solely on the final significance result table for judgement. However, the
SHAP chart, displaying all values, can mitigate this drawback by providing a more
comprehensive understanding and facilitating informed judgements.

As proposed by previous research (�Adland and K€ohn, 2018; K€ohn, 2009), the result of
GAM is shown in Table 3. Likewise, the hyperparameter for the number of splines in GAM is
set to 30 in this paper after various trials. The effective degree of freedom (EDoF) of 117.1114
indicates that there exists considerable flexibility. Similarly, the individual EDoFs reflect the

EDoF p-value Significance code

dwt 17.4 1.11E�16 *** Effective DoF 117.111
tc 20.5 1.11E�16 *** Log Likelihood �6837.018
nb 18.7 1.11E�16 *** AIC 13910.259
scrap 16.6 1.11E�16 *** AICc 13921.834
age 19.8 1.11E�16 *** GCV 5.804
libor 18.4 1.11E�16 *** Scale 5.327
scrubber 1.0 5.20E�03 ** Pseudo R-Squared 0.924
bwts 1.0 9.19E�01
eco 1.0 3.71E�08 ***
country_jp 0.9 9.81E�01
country_kr 0.9 1.60E�02 *
country_cn 0.9 1.11E�16 ***
country_o 0.00 5.76E�13 ***
intercept 0.00 1.11E�16 ***

Note(s): ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1; ‘ ’: 1
Source(s): Table by the author

Figure 5.
Feature importance
based on SHAP of
stacking ensemble

Table 3.
Result of benchmark

GAM with
smoothed terms
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degree of non-linearity. Applying a 5% threshold for p value, all variables, except bwts and
country_jp, are statistically significant, rejecting the null hypothesis of a linear relationship.

One of the big differences between the stacking ensemble and GAM lies in the model
construction. The stacking ensemble can leverage the predictive power of the tree-driven
base learners by adding a small amount through a series of trees, and the feature engineering
power of the add-on neural network. To some extent, with the use of splines, GAM fits several
polynomial functions to approximate the non-linear relationship of each independent variable
with the target, rather than fitting a single polynomial function, necessitating more manual
judgement.

Furthermore, unlike in a neural network, the addition of the optimal interaction terms in
GAM normally requires trials and judgement. To ensure the robustness of the GAM and
avoid high-degree multicollinearity, low-degree polynomials are typically employed.
However, in tree-driven methods, through bootstrapping and aggregation, the same effect
can be achieved more conveniently given the efforts spent in this paper.

However, higher variance is observed for vessels priced at more than $30 million in all
methods. One possible reason is the limited data, making it challenging to train the models. It
is also not easy to collect all ranges of data in terms of vessel specification and transaction
details. Another limitation concerns the optimal selection of the supervised models used in
this study. Since the primary objective of this study is not to identify the best way to choose
base learners, it’s satisfying to observe the meta-learner combining the strengths of the
chosen models. This paper follows guidance on selecting diverse base learners (Wolpert,
1992), taking into account RF’s robustness, GB’s boosting capabilities, XGB’s efficiency, and
CatBoost’s effective handling of categorical variables.

5. Conclusion
The approach of this paper examines whether the stacking ensemble method with add-on
FNNmodels can improve the valuation of second-hand vessels in the dry bulk carrier market
by contrasting the parameters inference methods used in previous studies. Additionally, the
commonly used GAM method is evaluated as a benchmark.

The data ranging from 01/01/2014 to 31/12/2022 are split into 70% as training dataset for
model fitting and 30% as test dataset for performance comparison. The designed stacking
ensemble approach results in the best performance with a prediction accuracy of 74% on test
dataset falling into the less-than-10% error range, with the lowest MAE and MSE of 0.9627
and 2.54754, contrasting 1.50149 and 5.29204 from benchmark GAM.

For traditional statistical models, multicollinearity and feature engineering typically
requires trials and judgement in the addition of interactions and polynomials. In this paper,
RF, GB, XGB and CatBoost are employed. These four diverse base models are trained
independently from the perspective of themeta-model, considering their robustness, boosting
capabilities, efficiency and good handling of categorical variables, respectively. They are
expected to capture different characteristics from the same training dataset. Additionally,
along with the feature engineering capability of the add-on neural network, they collectively
serve as a convenient desktop valuation tool.

For the feature importance, the SHAP chart illustrates that the age at sale,
newbuilding price and 1-year time charter rate are the three most important features
from the stacking ensemble. One of the base learners, Catboost, can effectively handle
dummy variables such as ‘country_jp,’ which is deemed insignificant by GAM. The
adaptable stacking approach, as intended, offers the possibility of leveraging the
strengths of individual methods, providing users with significant freedom to customise
their base learners, particularly for those operating in rapidly evolving methodological
areas of asset valuation.
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There is also room for improvement in this analysis in future development. The first one
comes from the data’s completeness and reliability side, such as the vessel’s actual condition
at the time of sale; certain terms and conditions of the sale contract; whether the ship has an
incoming special survey; whether there is a subsidy or long-term charter contract involved,
etc. Data reliability is another area for improvement. For example, some records may
misreport important installation information or other relevant terms in the contract, or they
may contain typographical errors, necessitating careful handling of outlier removal. It is
essential to ensure that the removal of outliers is assessed carefully to determine whether it
enhances the validity of your analysis or introduce bias. Lastly the number of transactions is
a limitation; the trading of second-hand vessels is not as frequent as the freight market, which
will bring pressure on supervised machine learning methods in correctly capturing the
pattern and may lead to unstable performance. Furthermore, this method can be applied to
other shipping sectors like oil tankers and containerships since they also have a given size of
transaction volume, but specialised vessels such as chemical tankers and gas carriers need
much more qualitative determination of their values.
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