To read this content please select one of the options below:

(excl. tax) 30 days to view and download

Predicting maintenance work hours in maintenance planning

Waqas Khalid, Simon Holst Albrechtsen, Kristoffer Vandrup Sigsgaard, Niels Henrik Mortensen, Kasper Barslund Hansen, Iman Soleymani

Journal of Quality in Maintenance Engineering

ISSN: 1355-2511

Article publication date: 1 July 2020

Issue publication date: 27 April 2021

470

Abstract

Purpose

Current industry practices illustrate there is no standard method to estimate the number of hours worked on maintenance activities; instead, industry experts use experience to guess maintenance work hours. There is also a gap in the research literature on maintenance work hour estimation. This paper investigates the use of machine-learning algorithms to predict maintenance work hours and proposes a method that utilizes historical preventive maintenance order data to predict maintenance work hours.

Design/methodology/approach

The paper uses the design research methodology utilizing a case study to validate the proposed method.

Findings

The case study analysis confirms that the proposed method is applicable and has the potential to significantly improve work hour prediction accuracy, especially for medium- and long-term work orders. Moreover, the study finds that this method is more accurate and more efficient than conducting estimations based on experience.

Practical implications

The study has major implications for industrial applications. Maintenance-intensive industries such as oil and gas and chemical industries spend a huge portion of their operational expenditures (OPEX) on maintenance. This research will enable them to accurately predict work hour requirements that will help them to avoid unwanted downtime and costs and improve production planning and scheduling.

Originality/value

The proposed method provides new insights into maintenance theory and possesses a huge potential to improve the current maintenance planning practices in the industry.

Keywords

Acknowledgements

The authors acknowledge the funding received from the Centre for Oil and Gas – DTU/Danish Hydrocarbon Research and Technology Centre (DHRTC). Moreover, the authors acknowledge the efforts of Julia Krogh Agergaard in reviewing and editing the article.

Citation

Khalid, W., Albrechtsen, S.H., Sigsgaard, K.V., Mortensen, N.H., Hansen, K.B. and Soleymani, I. (2021), "Predicting maintenance work hours in maintenance planning", Journal of Quality in Maintenance Engineering, Vol. 27 No. 2, pp. 366-384. https://doi.org/10.1108/JQME-06-2019-0058

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles