Using deep learning to investigate digital behavior in culinary tourism
Journal of Place Management and Development
ISSN: 1753-8335
Article publication date: 3 November 2020
Issue publication date: 14 January 2021
Abstract
Purpose
The purpose of this study is to gather insights into digital consumer behaviour related to Chinese restaurents by examining visual contents on Tripadvisor platform.
Design/methodology/approach
Using the deep learning approach, this research assessed consumer-posted online content of dining experiences by implementing image analysis and clustering. Text mining using word cloud analysis revealed the most frequently repeated keywords.
Findings
First, 4,000 photos of nine Chinese restaurants posted on Tripadvisor’s website were analyzed using image recognition via Inception V3 and Google’s deep learning network; this revealed 12 hierarchical image clusters. Then, an open-questionnaire survey of 125 Chinese respondents investigated consumers’ information needs before visiting a restaurant and after purchasing behavior (motives to share).
Practical implications
This study contributes to culinary marketing development by introducing a new analysis methodology and demonstrating its application by exploring a wide range of keywords and visual images published on the internet.
Originality/value
This research extends and contributes to the literature regarding visual user-generated content in culinary tourism.
Keywords
Citation
Hasan, M.R., Abdunurova, A., Wang, W., Zheng, J. and Shams, S.M.R. (2021), "Using deep learning to investigate digital behavior in culinary tourism", Journal of Place Management and Development, Vol. 14 No. 1, pp. 43-65. https://doi.org/10.1108/JPMD-03-2020-0022
Publisher
:Emerald Publishing Limited
Copyright © 2020, Emerald Publishing Limited