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Abstract

Purpose — Real-time monitoring of the critical physical fields of core components in complex equipment is of
great significance as it can predict potential failures, provide reasonable preventive maintenance strategies and
thereby ensure the service performance of the equipment. This research aims to propose a hierarchical explicit—
implicit combined sensing-based real-time monitoring method to achieve the sensing of critical physical field
information of core components in complex equipment.

Design/methodology/approach — Sensor deployable and non-deployable areas are divided based on the
dynamic and static constraints in actual service. An integrated method of measurement point layout and
performance evaluation is used to optimize sensor placement, and an association mapping between information
in non-deployable and deployable areas is established, achieving hierarchical explicit—implicit combined
sensing of key sensor information for core components. Finally, the critical physical fields of core components
are reconstructed and visualized.

Findings — The proposed method is applied to the spindle system of CNC machine tools, and the result shows
that this method can effectively monitor the spindle system temperature field.

Originality/value — This research provides an effective method for monitoring the service performance of
complex equipment, especially considering the dynamic and static constraints during the service process and
detecting critical information in non-deployable areas.
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1. Introduction

With the rapid development of manufacturing, typical complex equipment such as CNC
machine tools and nuclear power equipment plays a vital role in modern industrial production.
Among them, core components such as the spindle of CNC machine tools and the surge line of
nuclear power equipment significantly impact their service performance (Bae et al., 2021; Cai
et al., 2017). Real-time monitoring of the critical physical fields of core components can
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predict potential failures in complex equipment, provide reasonable preventive maintenance
strategies, and thereby ensure the service performance of the equipment (Hao et al., 2023;
Zhao et al., 2022). However, how to monitor these critical physical fields of complex
equipment core components in real time using sensing technology is an urgent scientific
problem that needs addressing. In recent years, there has been a surge of research focused on
the optimization of sensor layout and the extraction of key sensor information.

Tao et al. (2018) collected acceleration signals on the gearbox of wind turbine, integrating
physical signals and virtual device simulation signals, achieving accurate fault identification
of wind turbine gearbox. Hosamo et al. (2022) proposed a predictive maintenance framework
for air handling unit (AHU), which included temperature, pressure, and flow sensors, and
combined performance evaluation rules and machine learning to achieve fault detection of
AHU. These methods have achieved certain success in using sensors to monitor equipment
performance. However, these methods lack exploration of the association between sensor
layout and monitoring quantities, relying more on experience than on explicit layout rationale.

Sun et al. (2024) divided the sensor areas through finite element simulation analysis, and
selected a set of temperature measurement points to achieve the migration prediction of
thermal errors. Kong et al. (2022) proposed a sensor number and location optimization method
based on the discrete particle swarm algorithm, aimed at state monitoring and fault diagnosis
of hydraulic control systems, effectively improving diagnostic efficiency while avoiding
resource waste. These methods have achieved certain effectiveness, but overlook the issue that
sensors cannot be deployed due to constraints imposed by geometric structures, service
processes, and environmental factors in complex equipment.

Chen et al. (2014) considered mechanical structure constraints on sensor layout in gate
machines and proposed a primitive motion and interference analysis algorithm, which
optimized sensor layout in gate machines. Yuan et al. (2015) designed an optimized layout
method for aircraft fuel measurement sensors, introducing a settable boundary distance factor
to solve the interference issues between sensor positions and the fuel tank walls. These
methods have achieved certain results. However, they fail to capture critical information from
non-deployable areas, leading to incomplete equipment sensor information collection.

Inresponse to the existing research problems, this research proposes a real-time monitoring
method for the service performance of complex equipment. The method optimizes sensor
layout through hierarchical means and detects critical information in both deployable and non-
deployable areas, achieving real-time reconstruction of the critical physical fields of core
components. The main contributions are as follows: (1) A complex equipment virtual-real
prototype considering dynamic and static constraints related to the real service process is built,
and the sensor deployable and non-deployable areas are accurately divided through a
combination of physical experiments and numerical simulations; (2) An integrated method of
measurement point layout and performance evaluation is utilized to optimize sensor
placement, and an association mapping between information in non-deployable and
deployable areas is established, thereby achieving hierarchical explicit-implicit combined
sensing of key sensor information for core components; (3) The critical physical fields of core
components is reconstructed based on the sensing of key sensor information, and real-time
monitoring of the service performance of complex equipment is achieved through
visualization tools.

2. Overall framework

The overall framework of this research is shown in Figure 1, which mainly involves three
parts: complex equipment, virtual-real prototype, and functional module. Firstly, a virtual-real
prototype of the core component is constructed based on the geometry, materials, and
structural information of the complex equipment, and the sensor deployable and non-
deployable areas are divided based on the dynamic and static constraints experienced during
the service process. Based on the sensor areas divided in the virtual-real prototype, a
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Figure 1. Overall framework of the method

hierarchical approach is used to achieve sensor optimization layout and information
exploration, guiding the sensor placement on the actual complex equipment. The physical field
is reconstructed based on the real-time collected key sensor data of the complex equipment,
and performance monitoring is achieved through visualization tools.

3. Method and principle

3.1 Division of sensor areas considering dynamic and static constraints

Constructing a virtual-real prototype of complex equipment that correlates with the dynamic
and static constraints of the actual service process is the foundation for accurately dividing the
sensor deployable and non-deployable areas. The virtual-real prototype includes both virtual
and physical prototypes. The virtual prototype, based on finite element analysis (FEA),
performs high-precision simulations of the core component of complex equipment. It includes
the geometric shapes, material properties, internal structures, and various physical parameters
related to the actual service process, enabling simulating the behavior and critical physical
fields of component during the actual service process. The physical prototype, built based on
the real core component of complex equipment, not only reproduces the geometric and
structural features of the equipment but also embeds the necessary sensors and measurement
systems to collect operational data for further analysis.

The virtual-real prototype integrates the dynamic and static constraints of complex
equipment during the actual service process. Dynamic and static constraints refer to a series of
moving and stationary conditions that affect the normal use of sensors during their
deployment. Dynamic constraints involve the limitations and conditions encountered during
the operation of the equipment, such as the movement of components and changes in the
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surrounding environment. Static constraints focus on the conditions for sensor deployment
when the equipment is not in motion or affected by external dynamics, such as the dimensions
and shapes of the installation space. Evaluating the sensor deployability in various regions of
the core component based on these dynamic and static constraints ensures that the sensors do
not interfere with the normal operation of the sensors themselves or the core component due to
spatial limitations or environmental impacts, thereby dividing the sensor deployable and non-
deployable areas.

3.2 Hierarchical explicit-implicit combined sensing of key sensor information

Based on the integrated method of measurement point layout and performance evaluation and
explicit-implicit measurement points association mapping modeling, an optimized sensor
layout scheme for monitoring the physical fields of core components in complex equipment is
obtained, as shown in Figure 2.

3.2.1 Integrated method of measurement point layout and performance evaluation for
sensor layout optimization. The placement of sensors is crucial for monitoring the
performance of complex equipment, as it affects the accuracy and coverage of the
monitoring data, and consequently the quality of the data. Since the ultimate goal of sensor
placement and data collection is to monitor the performance of core component, a performance
evaluation index of the core component can be used to measure the effectiveness of the sensor
layout. An integrated method of measurement point layout and performance evaluation is
proposed to optimize the sensor layout, with specific steps as follows:

Step 1: Measurement points are uniformly selected along predetermined lines or grid
patterns on the virtual prototype of complex equipment, and the data of the physical
quantities to be monitored by these measurement points over time are exported.

Step 2: A performance evaluation index for the core component, such as the deformation of
a component in a critical direction or the wear of a specific part of the component, is chosen,
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Figure 2. Hierarchical explicit-implicit combined sensing of key sensor information



and the performance evaluation index data of the core component of the complex
equipment over time are exported.

Step 3: The correlation coefficient between the physical quantities of each measurement
point and the performance evaluation index is calculated. When the correlation coefficient
of a physical quantity measurement point and the performance evaluation index exceeds a
set threshold, that measurement point is marked as a principal factor measurement point,
and the area formed by connecting the principal factor measurement points is designated as
the principal factor zone.

Step 4: Sensors are uniformly placed along predetermined lines or grid patterns in the
principal factor zone of the physical prototype of complex equipment. The service process
of the actual equipment is simulated, and the data of these measurement points over time are
collected, while the performance evaluation index data of the core component of the
complex equipment over time are simultaneously measured.

Step 5: Different combinations of measurement points are used as the input for modeling,
and the performance evaluation index is used as the model output to establish a model.

Step 6: The root mean square error (RMSE) between the predicted results and the actual values
is calculated as the objective function for the combination of measurement points, and the
particle swarm optimization (PSO) algorithm is used to iteratively optimize and select the
combination of key measurement points that best represent the performance evaluation index.

3.2.2 Explicit-implicit measurement points association mapping modeling. In the complex
equipment, many critical measurement points often exist in non-deployable areas, which can
reflect important physical fields information. Without obtaining the critical information from
non-deployable areas, it is challenging to achieve comprehensive physical fields calculations.
Therefore, based on the physical prototype of complex equipment, an association mapping
between information in non-deployable areas and deployable areas is established, with
specific steps as follows:

Step 1: The real-world deployability of sensors is simulated on the physical prototype of the
core component, dividing the sensor deployable and non-deployable areas. In the physical
prototype, sensor information from both parts can be conditionally obtained.

Step 2: Sensors are placed at key measurement points in the sensor non-deployable areas of
the physical prototype of the core component, and multiple sensors are placed in the sensor
deployable areas to collect sensor data during the operational process.

Step 3: K-means clustering analysis is performed on the measurement points in the sensor
deployable areas, dividing the measurement points into several internally similar clusters.

Step 4: The correlation between the key measurement points in the sensor non-deployable
areas and the measurement points in the sensor deployable areas is analyzed using
correlation analysis methods, and the measurement points in the sensor deployable areas
are ranked based on the correlation magnitude.

Step 5: In each cluster formed by the measurement points in the sensor deployable areas, the
measurement point with the highest correlation to the key measurement point in the sensor
non-deployable areas is selected.

Step 6: Based on specific requirements and data characteristics, an appropriate modeling
method is chosen. The selected measurement points in the sensor deployable areas are used
as inputs and the key measurement points in the sensor non-deployable areas are used as
outputs to establish the association mapping model.
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3.3 Reconstruction of critical physical field of core component

On actual complex equipment, sensors are deployed according to the optimized measurement
point layout scheme, and sensor data of the core component during the service process is
collected in real time. Based on the characteristic and precision requirement of the data, an
appropriate interpolation method is selected to perform interpolation calculations on the
known data points. The results of the interpolation calculations are then mapped to the entire
component area, forming a complete distribution of the physical field.

The real-time calculated physical field result is visualized in the form of a heatmap.
Heatmaps represent data values through color gradients, allowing for an intuitive display of the
spatial variation and distribution of the data. The key to using heatmaps for visualization lies in
mapping the physical quantity values to colors. Typically, the maximum and minimum values
of the physical field are first mapped to specific colors, and then the physical quantity is
mapped across the entire color spectrum to achieve the visualization of the physical field.

4. Case verification

Taking the spindle system of a certain model of CNC machine tools as an example, the service
performance is monitored in real time using hierarchical explicit-implicit combined sensing
method. During the service process of CNC machine tools, temperature field changes in the
spindle system caused by environmental temperature variations, bearing heat generation, and
other factors can lead to thermal deformation of components, thereby affecting machining
accuracy and reducing service performance. Therefore, it is necessary to monitor the
temperature field of the spindle system of CNC machine tools and make timely adjustments to
ensure machining accuracy.

Firstly, a virtual-real prototype of the spindle system is established, including an FEA
model and a physical prototype. The temperature field simulation result is shown in Figure 3.

A physical prototype consistent with the actual spindle system is constructed, and
necessary sensors are embedded, as shown in Figure 4(a). Based on the dynamic and static
constraints such as internal geometric structures, coolant interference, and cutting sparks
encountered during the actual processing, the sensor deployability is simulated on the physical
prototype of the spindle system. The sensor deployable and non-deployable areas are divided
accordingly. In the physical prototype, sensor information from both areas can be
conditionally obtained. To facilitate distinction, an acrylic cover is added to the sensor non-
deployable areas on the physical prototype, as shown in Figure 4(b).

The integrated method of measurement point layout and performance evaluation is
employed to optimize the sensor layout. Since temperature field variations lead to thermal
errors, which directly affect the machining performance of the machine tools, the thermal error
of the spindle is chosen as the performance evaluation index for monitoring. Firstly, the
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Figure 3. FEA result of the spindle system temperature field
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Figure 4. Physical prototype of the spindle system: (a) spindle system, (b) division of sensor areas

principal factor zone that has a strong correlation with thermal error is identified based on data
from FEA. Multiple temperature sensors are deployed in the principal factor zone of the
physical prototype and an eddy current displacement sensor is placed at the front end of the
spindle to collect sensor data during operation. Then, different combinations of measurement
points are used as inputs, and thermal error is used as the output to establish a model and
calculate the fitness of each combination of measurement points. To extract the temporal
characteristics of temperature and thermal error data, a Long Short-Term Memory (LSTM)
network is used to establish the model. LSTM is a deep learning model commonly used for
processing sequential data. To address the limitation of traditional recurrent neural networks
(RNNs), which struggle to retain information from earlier in a sequence, LSTM utilizes three
gate controllers to selectively retain and forget inputs and states. This enables LSTM to better
capture long-term dependencies in time series data. The LSTM unit is illustrated in Figure 5,
and the functions of the three gate controllers are given by the following formulas:
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Figure 5. LSTM unit
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where Wy» W, W, and by« b;+ b, are the weight matrices and biases of the forget gate,
input gate, and output gate, respectively.

Finally, the PSO algorithm is employed to iteratively optimize and select the
combination of measurement points that best represent the thermal error. Sensor data at
multiple rotational speeds are collected, and a thermal error prediction model is
established using the selected measurement points. The prediction results at rotational
speeds of 1,200 RPM and 1,500 RPM are shown in Figure 6, with R?values of 99.5 and 99.6%,
respectively.

For sensor non-deployable areas, K-means clustering analysis and Pearson correlation
analysis are initially used to select several measurement points in the deployable areas that can
represent the critical measurement points in the non-deployable areas. An LSTM network is
used to establish an association mapping model between the selected measurement points in
the deployable areas and the critical measurement points in the non-deployable areas. The test
results of the trained association mapping model at rotational speeds of 1,200 RPM and 1,500
RPM are shown in Figure 7, with R? values both reaching 99.5%, demonstrating that the
selected measurement points in the deployable areas can effectively predict the temperature
information of the critical measurement points in the non-deployable areas. This provides
guidance for sensing information in difficult-to-deploy sensor locations on the actual spindle
system.

Combining the sensor layout schemes for both sensor deployable and non-deployable
areas, temperature sensors are deployed on an actual CNC machine tool to collect real-time
temperature data during operation, as shown in Figure 8.

Taking the temperature sensor data from a specific region of the spindle system at a certain
moment as an example, the temperature field is reconstructed using linear interpolation and
visualized in the form of a heatmap, as shown in Figure 9.
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Figure 6. Modeling effect of performance evaluation index: (a) 1,200 RPM, (b) 1,500 RPM
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Figure 7. Modeling effect of association mapping: (a) 1,200 RPM, (b) 1,500 RPM

Source(s): Authors’ own work

Figure 8. Data collection from CNC machine tool: (a) CNC machine tool, (b) temperature sensors near the Z-
axis ball screw, (c) temperature sensor on the table base

As mentioned earlier, there are certain limitations in the existing methods for acquiring
critical sensing information in complex equipment, including: a lack of exploration of the
correlation between sensor layout and monitoring performance; neglecting the challenges of
sensor placement difficulties due to dynamic and static constraints during actual operation
when planning sensor layout; and the inability to obtain sensing information from areas where
sensors cannot be placed. To address these shortcomings, the method proposed in this study
optimizes sensor layout and enables the acquisition of sensing information from hidden areas
through an integrated method of measurement point layout and performance evaluation, along
with explicit-implicit association mapping modeling.

The method has been validated and applied on a typical piece of complex equipment, CNC
machine tools, and can be extended to other types of complex equipment. For different types of
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Figure 9. Heatmap of the temperature field in a section of the spindle system

complex equipment, the first step is to construct virtual-physical prototypes of the core
components based on information such as the geometry, materials, and structure of the
equipment. Next, the sensor deployable and non-deployable areas are defined based on the
dynamic and static constraints experienced during operation. Sensor layout optimization and
information acquisition are subsequently achieved through an integrated method of
measurement point layout and performance evaluation, along with explicit-implicit
association mapping modeling. Finally, the physical field is reconstructed based on the real-
time data collected from critical sensors in the complex equipment.

5. Conclusion

This research proposes a real-time monitoring method for the service performance of complex
equipment by optimizing sensor layout through hierarchical means and detecting critical
information in both deployable and non-deployable areas, ultimately achieving real-time
reconstruction of the critical physical fields of core components. The research results are
summarized as follows:

(1) Avirtual-real prototype that includes finite element analysis and a physical prototype is
constructed based on actual complex equipment, and the sensor deployable areas are
divided based on the dynamic and static constraints during the service process.

(2) Hierarchical explicit-implicit combined sensing of key sensor information for core
components is achieved using an integrated method of measurement point layout and
performance evaluation, and explicit-implicit association mapping modeling.

(3) The method is validated on the spindle system of CNC machine tools. The temperature
sensor layout scheme is determined, and the temperature field is reconstructed using the
collected real-time sensor data to achieve performance monitoring of the spindle system.
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