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Abstract

Purpose – This paper proposes an approach to solve the vehicle routing problem with simultaneous pickup
and delivery (VRPSPD) in the context of the Physical Internet (PI) supply chain. The main objective is to
minimize the total distribution costs (transportation cost and holding cost) to supply retailers from PI hubs.
Design/methodology/approach – Mixed integer programming (MIP) is proposed to solve the problem in
smaller instances. A random local search (RLS) algorithm and a simulated annealing (SA) metaheuristic are
proposed to solve larger instances of the problem.
Findings –The results show that SA provides the best solution in terms of total distribution cost and provides
a good result regarding holding cost and transportation cost compared to other heuristicmethods.Moreover, in
terms of total carbon emissions, the PI concept proposed a better solution than the classical supply chain.
Research limitations/implications – The sustainability of the route construction applied to the PI is
validated through carbon emissions.
Practical implications –This approach also relates to themain objectives of transportation in the PI context:
reduce empty trips and share transportation resources between PI-hubs and retailers. The proposed
approaches are then validated through a case study of agricultural products in Thailand.
Social implications – This approach is also relevant with the reduction of driving hours on the road
because of share transportation results and shorter distance than the classical route planning.
Originality/value – This paper addresses the VRPSPD problem in the PI context, which is based on sharing
transportation and storage resources while considering sustainability.
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1. Introduction
A new innovative paradigm known as the “Physical Internet” or PI was proposed in 2011 as a
modern and sustainable solution to improve global logistics and supply chains (Montreuil
et al., 2013). The PI is described as an open global logistics supply chain of physical, digital and
operational activities based on interconnectivity between all parties: suppliers, distributors
and customers (Montreuil et al., 2013). In a PI network, the goods are encapsulated in a
standardizedmodular box, denoted as PI container, before being transported to other nodes in
the PI network (Chargui et al., 2019; Sallez et al., 2016). The idea of encapsulation in PI
containers is similar to pallets or container boxes in the classical supply chain. However, PI
containers are more dynamic in the supply chain network for the transportation of goods.

The PI concept is quite similar to a cyber-physical system (CPS) but there are some
differences. PI focuses on the whole logistics network and interconnection between nodes. It
can also support single and intermodal transportation in the same network. CPS is a smart
system that integrates the workflow between physical and technological elements (Nagy
et al., 2018). For example, trains can communicate with each other using both an automated
system and physical alert signals. The PI network can comprise numerous CPSs to ensure
interconnection between all the parties including vehicles, distribution centers and customer
nodes. In this article, we focus primarily on the PI concept.

Nowadays, many studies focus on the PI concept and how to implement this concept in
real applications. One of the most exciting aspects is the distribution process in the PI
network (Ben Mohamed et al., 2017; Caballini et al., 2017; Fazili, 2014; Gontara et al., 2019;
Venkatadri et al., 2016). The challenge with PI distribution is how to create reliable and
flexible connections between all the PI nodes in the network, as well as how to manage
resources in all the PI hubs easily. As explained in Caballini et al. (2017), Venkatadri et al.
(2016), PI hubs are fully connected with suppliers (origin nodes) and customers (destination
nodes). However, if the number of PI hubs is large, it is better to group them in a cluster and
dynamically determine the number of hubs based on different daily demands (Kantasa-Ard
et al., 2019). The clustering concept not only reduces the connection complexity between all PI
nodes but also improves the construction of routes between PI nodes in the network.

Some relevant studies have proposed route construction in the PI context. For example,
the research by Ben Mohamed et al. (2017) proposed vehicle route construction for the
simultaneous pickup and delivery problem. Another study (Kantasa-ard et al., 2021a)
proposed mixed integer linear programming (MILP) to find the optimal solution for the
routing problem. A nearest neighbor search heuristic was developed to find a near-optimal
solution in some instances that cannot be solved using CPLEX. However, these methods only
support the delivery process between PI hubs and retailers.

There are still some research gaps in PI distribution regarding the aforementioned research.
For example, in the research by Ben Mohamed et al. (2017), only one truck was used to pick up
and deliver goods at pre-assigned retailers under that hub or distributor. Furthermore, all the
truckswere required to return to their initial hubs at the end of the day.These heavy constraints
are not representative of reality. Another gap in the previous research by Kantasa-ard et al.,
2021a) concerns inventory control at PI hubs. This research did not focus on remaining
stock levels as a holding cost at each hub. However, these costs can be hefty and must be
considered. Based on these gaps, we propose an attractive contribution to address them.

The contribution proposes a mathematical model as a framework for the new distribution
problem in the PI context. This study focuses on the simultaneous pickup and delivery
vehicle routing problem (VRPSPD). The problem is formulated using mixed integer
programming (MIP) to construct feasible routes between PI-hubs and retailers and is solved
using CPLEX. In the PI context, as shown in the literature review, pickup and delivery
problems have rarely been addressed, especially from an operational research point of view.
This contribution will help researchers formulate the transportation route for pickup and
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delivery in the PI context more easily. In addition, the chosen metaheuristics, which are
random local search (RLS) and simulated annealing (SA), also provide a constructive solution
in the case of numerous interconnections between all nodes in the PI network.

This paper is divided into six sections. This section provides the background and primary
contributions to solve the distribution problem in the PI context. Section 2 reviews the
literature on the distribution process in the PI context and solving methods. Section 3 details
the assumptions, experimental dataset and the feasible routes constructed. Section 4 details
the methodology and the implementation of the proposed optimization methods (MIP and
metaheuristics). Section 5 compares the proposed optimization methods from both classical
supply chain and PI perspectives, and presents the CO2 emissions determined through a case
study involving the distribution of agricultural products. The conclusion and some future
lines of research are given in Section 6.

2. Literature review
This section provides an overview of the relevant literature regarding the distribution process,
the pickup and delivery problem, and some route construction solvingmethods in the context
of the PI. In addition, a comparison of the relevant literature on classical supply chains and the
PI regarding the pickup and delivery problem is presented at the end of this section.

2.1 The pickup and delivery process in the physical internet supply chain
Several studies have examined the distribution process in the context of the PI supply chain.
Firstly, research in Fazili (2014) proved the performance of PI logistics by comparing
conventional (door-to-door) and hybrid (combination of conventional and PI) logistics
concepts based on the road network. Venkatadri et al. (2016) developed a dispatch model
between pairs of cities based on the PI context and compared it with a traditional logistics
system. Caballini et al. (2017) defined andmodeled a road network to minimize total transport
costs, exploit truck capacity and reduce empty trips from one node to another. Lastly,
Gontara et al. (2019) constructed a hub-to-hub route for the road transport of PI containers.
The border gateway protocol (PI-BGP) concept was implemented in the PI network. However,
this study did not consider demand and inventory in the network. These studies primarily
formulated and solved the distribution problem via MILP models based on truck capacity.
The distribution problem in these papers focused on movement between source nodes and
destination nodes such as hubs to hubs or suppliers to customers. They performed well with
small instances and proposed some future aspects to address the research gap. For instance,
the researchers in Caballini et al. (2017) and Fazili (2014) suggested developing heuristic
methods for larger instances and examined the construction of PI routes in a real urban
transportation network, focusing more particularly on load-size in PI containers. The pickup
and delivery problem in the PI context is explained in more detail in the next section.

Asmentioned previously, most of the research used exact and heuristic algorithms, which
are also used in traditional distribution networks (Battarra, 2011; Mor and Speranza, 2020).
Moreover, several studies investigating the PI distribution network also considered the
efficiency of vehicle routing and inventory management between nodes in the network.
Indeed, pickup and delivery are two of the main operations in the distribution process. Some
previous studies have investigated the vehicle routing problemwith pickup and delivery in a
traditional distribution network, particularly with multiple trips. For instance, Felipe et al.
(2012) implemented an adapted heuristic with a variable neighborhood search (VNS) to
optimize transportation routes for pickup and delivery operations. The authors in Guemri
et al. (2016) proposed a GRASP-based heuristic to solve the transportation routing and
inventory control problems for multiple products and vehicles. The research also
benchmarked its performance against two other reference algorithms. Additionally,
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Vilhelmsen et al. (2016) proposed a hybrid method combining heuristic and optimality-based
methods to allocate appropriate cargoes to tanks available for loading in maritime bulk
shipping. The computational times were proposed to evaluate the performance of the
solutions. The previous studies have demonstrated that the efficiency of pickup and delivery
operations is essential for the distribution process. Excellent operations would positively
offset all relevant costs in the distribution process.

The pickup and delivery problems have been equally studied in the PI context. For
example, Roug�es and Montreuil (2014) demonstrated how the concept of interconnectedness
in the PI could solve the limitations of current crowdsourcing. The latter is a less flexible
network in which parcels are processed and managed individually from point to point. The
authors also demonstrated that PI can support crowdsourcing delivery. Moreover, with
standard modular containers, smaller containers can be combined and thus facilitate
transportation (Sallez et al., 2016). Each container is also equipped with devices (e.g. RFID
technology, sensors networks) to monitor and control products during transportation. Fazili
(2014) andVenkatadri et al. (2016) have proposed thatmodular containers of various sizes can
be embedded in different vehicles after trans-shipment at PI hubs. In Pal and Kant (2016), a PI
network concept was implemented in a fresh food distribution process. The authors proposed
a mechanism for decreasing empty truck miles and the carbon footprint through
infrastructure sharing: hubs, trucks and handling tools in the fresh food distribution
network. Furthermore, local and long-distance distribution between hubs was determined by
inter-domain delivery strategies. Two other studies (Faug�ere and Montreuil, 2017, 2020)
proposed the concept of a hyper-connected network to pick up and deliver smart lockers in
the PI network; the optimization of the smart locker design was based on uncertainty
demand. This concept made the pickup and delivery processes faster and more convenient
for customers. In addition, this research also implemented the sustainability concept with the
determination of CO2 emissions, for instance, to control the environmental pollution of
resulting from the transportation of goods. Several studies have demonstrated the benefits of
the sustainability aspect in the supply chain (Ding et al., 2021; Gajanand andNarendran, 2013;
Helo and Ala-Harja, 2018). Sustainability is clearly a founding element in the PI approach.

Even though some studies on the pickup and delivery problem deal with single depots,
few studies have considered multiple-depot vehicle routing problem (MDVRP). For instance,
BenMohamed et al. (2017) proposed the concept of simultaneous pickup and delivery in the PI
context with multiple depots. Each truck served a set of demand points pre-assigned to the
same hub. This research also considered some constraints such as multiple periods, multi-
zone urban coverage, heterogeneous fleets and multiple trips. MILP was constructed to
formulate the problem, and constructive greedy and insertion heuristics were implemented to
improve the solution.

Despite the small number of studies on the MDVRP in the PI context, some interesting
ideas in classical distribution networks could help us to discover a novel distribution
approach. The authors in Yu et al. (2013), for example, proposed an improved ant colony
optimization with distance-based clustering to construct the set of connected routes between
customers and depots. The computational time was used as the KPI to measure the routing
performance. Lam and Mittenthal (2013) also proposed a capacitated hierarchical clustering
heuristic method to improve the location-routing performance with multiple depots. In
another example, the authors in Ramos et al. (2020) developed an MILP model to enhance the
performance of the MDVRP. The heterogeneous fleet and the maximum routing time were
considered as the main factors in the study. These studies demonstrate that the MDVRP
concept is widely implemented in classical distribution networks.

The distribution approach in this paper not only mentions the pickup and delivery
problem but also focuses on the open vehicle routing problem (OVRP). The concept of the
OVRP considers that the starting node and the end node in a route may not be the same. This
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means that once the goods have been transported to the last customer, a truck does not need
to return to its original depot (Li et al., 2007). Some studies have implemented the concept of
OVRP. The authors in (Li et al., 2007) proposed a record-to-record travel algorithm to solve the
OVRP problem of home delivery of products with a test case (200–480 customers) and
compared it with existing heuristic methods in the classical supply chain. In addition, the
authors in Atefi et al. (2018) implemented the concept of decoupling points for each route to
increase the transportation profit. The idea was that each truck started distributing products
to all customers and changed to a new onewhen it arrived at the decoupling point tominimize
the cost for a longer journey. These two papers are good examples that demonstrate how to
solve route constructionwith a vast number of customer nodes via the OVRP in the context of
a classical supply chain. In contrast, to the best of our knowledge and according to the
literature review, there is no information on how to implement the OVRP in the PI context.

As the distribution flow of the PI network should be continuously updated and
synchronized, the concept of the simultaneous pickup and delivery problem (VRPSPD) with
multiple depots and open routing must be considered. In this case, each customer is visited
once, which can save more time for the pickup and delivery process. Moreover, pickup and
delivery at the same time can help each PI-hub to manage the limited number of trucks and
share them with other hubs. Several solving methods for the VRPSPD are presented in the
next section.

2.2 Solving methods for the VRPSPD
Many studies have investigated the VRPSPD in the classical supply chain, but few studies
deal with the PI context.

2.2.1 The VRPSPD in a classical supply chain. The survey of the VRPSPD (Parragh et al.,
2008) indicates that most of the research implemented tabu search (TS). The latter is one of the
most popularmetaheuristics proposed to solve the simultaneous pickup and delivery problem.
As described in Boussaı€d et al. (2013), the solution is chosen based on the tabu list to avoid
difficulties finding a near-optimal solution at localminima. However, the computational time is
longer compared with other methods such as local search (Bianchessi and Righini, 2007) or
insertion-based heuristics (Montan�e and Galv~ao, 2006). Before implementing a solution, TS
always checks existing solutions in the tabu list. Also, there is very little difference between
the results of the TS and the other methods. Even though TS performs well to find a near-
optimal solution, the performance of another metaheuristic known as “Simulated Annealing”
is similar but does not consider previous solutions in the memory (Boussaı€d et al., 2013).

Simulated annealing (SA) can accept a worse solution but always accepts one that is better
than the incumbent solution (Boussaı€d et al., 2013). SA is used for some VRPSPD problems.
For example, the authors in Wang et al. (2015) demonstrated that SA provides shorter travel
distances in around 36% of medium-size instances compared with a genetic algorithm based
on the same number of vehicles. Also, the research by Yu and Lin (2015) showed that SA can
obtain the same optimal solutions as CPLEX when there are less than 50 customers. The
authors (Yu and Lin, 2016) highlighted that SA proposed a near-optimal solution compared
with exact approaches. Mu et al. (2016) implemented parallel-SA with the datasets from
Dethloff (2001), Salhi and Nagy (1999), andMontane and Galvao (Montan�e and Galv~ao, 2006).
These different studies illustrate that the performance of SA is good in terms of total
transport costs and computational time compared with other exact ormetaheuristic methods.

2.2.2 The VRPSPD in the physical internet. Generally, regarding the vehicle routing
problem in the PI context, most of the research is formulated and implemented using MILP
(Caballini et al., 2017; Fazili, 2014; Venkatadri et al., 2016). However, some examples
implementedmetaheuristics to increase transportation efficiency. For instance, the authors in
Pal and Kant (2016) proposed a genetic algorithm to maximize the number of products to
be delivered and delivery quality of all fresh food transportation packages. Authors in
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BenMohamed et al. (2017) formulated the simultaneous pickup and delivery problem in urban
transportation using MILP. They improved the quality of the solution by implementing a
constructive greedy heuristic as the initial solution and an insertion heuristic to reduce the
postponement of non-service orders. However, they suggest ways of improving the solution
using metaheuristic methods. Regarding all perspectives of the VRPSPD in previous studies,
some exciting suggestions are proposed to improve future studies such as the implementation
of metaheuristics, product delivery optimization and the real-case planning of transportation
routes. A summary of existing studies is provided in Table 1.

According to the summary in Table 1, many studies have implemented exact and
metaheuristic methods to solve the VRPSPD in the context of the classical supply chain.
However, few studies have focused on the PI context. There are still some gaps in VRPSPD
studies regarding the PI supply chain including focusing less on multiple depots and open
routes for VRP. Therefore, these two aspects should be studied more in the PI context. The
present paper provides some suggestions in this respect.

This study also mentions environmental sustainability through the calculation of total
carbon emissions in the PI distribution network. Indeed, the concept of the PI not only
improves the distribution performance but also focuses on the environmental impact
(Montreuil et al., 2013). Some relevant studies have proposed that the PI provides a good
solution with respect to sustainability. For example, Pan et al. (2013) demonstrated that
pooling in the supply chain network can reduce carbon emissions in road and rail transport
modes. Another study (Yao, 2017) proposed that a one-stop delivery mode in online shopping
could reduce unnecessary logistics activities for the transportation of goods from
manufacturers to customers. The reduction in the transportation process between parties
affects total carbon emissions in the network. These studies prove that PI has a positive
impact on the environment. Details of all the relevant problems and assumptions regarding
the transportation of goods are provided in the next section.

VRPSPD paper
Type of
supply chain Research context Solving solution

Bianchessi and
Righini (2007)

Classical Heuristics for vehicle routing problem with
simultaneous pickup–delivery

Tabu search, local
search

Montan�e and
Galv~ao (2006)

Classical Tabu search with three types of movements:
relocation, interchange, crossover

Tabu search,
insertion-based
heuristics

Yu and Lin (2016) Classical The location-routing problem with
simultaneous pickup–delivery

Simulated annealing,
Exact methods

Wang et al. (2015) Classical Parallel SA implemented for VRPSPD during
specific time windows

Parallel SA, Exact
method, Genetic
Algorithm

Yu and Lin (2015) Classical A simulated annealing heuristic for the open
location-routing problem

Simulated annealing,
Exact method

Mu et al. (2016) Classical Parallel-SA implemented for VRPSPD with
different datasets from Dethloff, Salhi and
Nagy, and Montane and Galvao

Simulated annealing,
parallel SA

Pal and Kant
(2016)

Physical
Internet

Proposed mechanism for decreasing empty
truckmiles and carbon footprint in a fresh food
distribution network

Exact method, Genetic
Algorithm

Ben Mohamed
et al. (2017)

Physical
Internet

Simultaneous pickup–delivery for
interconnected city logistics

Exact method,
insertion-based
heuristics

Source(s): Authors own work

Table 1.
Summary of solving

solutions of the
VRPSPD
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3. Problem statement and assumptions
This section presents the problem description and its assumptions in addition to the
mechanism used to construct the feasible routes in both the classical and PI supply chains.

3.1 Assumptions
When the number of PI nodes is large, the set of connected routes between PI hubs and
retailers is more complex. The problem assumptions then focus more on the route
construction between PI hubs and retailers, pickup and delivery quantities, and
infrastructure sharing in the network. The main assumptions used to construct the
feasible routes in the next subsection (3.2) are as follows:

(1) Different PI hubs can satisfy the stocks of retailers in the cluster, as depicted in the
example in Figure 1.

(2) The transportation networks are constructed based on the connections between PI
hubs and retailers and between retailers.

(3) Trucks have time-window constraints during transportation in a day.

(4) Each truck has to finish the simultaneous pickup and delivery within a day

(5) Retailer demands are predicted from historical demands.

(6) The delivery and pickup demands are equal or similar quantities (Parragh et al., 2008)

(7) Each hub has different holding costs. In fact, the holding cost of each hub is based on
the distance and hub location. Moreover, in the experiment, the inventory capacity of
each hub was limited so the goods distributed to each retailer did not exceed the
maximum capacity, thus preventing the accumulation of goods at the end.

Figure 1.
Example of a PI
network for the pickup
and delivery problem
with Route 1 and
Route 2

JILT
21,3

116



(8) All PI-hubs can share their means of transportation (trucks, drivers) between them
based on the number of PI hubs and retailers.

(9) PI hubs cover all retailer demands in a cluster.

3.2 The construction of feasible routes
As shown in the example in Figure 1, the set of routes is based on the daily pickup and
delivery demand of all retailers in a cluster. PI containers encapsulate all demands. The “PI
containers to deliver” are considered as the new products to be distributed to customers,
which are retailers in this case. In contrast, the “PI containers to pick up” are the returnable
products such as product packaging or incompatible products which have to be returned to
the PI hubs. The route starts from the starting hub to visit several retailers. After finishing all
pickup and delivery processes, the last hub is assigned at the end of the route. This is a major
difference with the classical supply chain, where all the trucks have to return to their starting
point after finishing all transactions. In fact, as the PI context allows all PI hubs to share their
resources in the network, a truck can go to the closest place after finishing its operation. Then,
the end point can be the same as or different from the starting point. In addition, another
difference between PI and classical is the open route and the dynamic interconnection
between all nodes in the network. In Figure 1 for Route #1 [H1-R3-R4-H2] in blue, the starting
hub is H1 and the retailers are R3 and R4. The pickup and delivery process is completed
simultaneously at each retailer. After completing all transactions, a truck transports the
pickup PI containers to the last hub, H2. The concept of the pickup and delivery flow of Route
#2 [H2-R5-R1-R2-H3] in red is the same as Route #1. However, the number of retailers visited
is different because of the truck capacity and daily demand. All the details of our proposal,
including the optimization models using both deterministic and heuristic methods, are
presented in section 4.

4. Solution approaches
Based on the assumptions and principles of route construction, this section proposes different
approaches to construct feasible routes in each cluster. Firstly, the MIP model formulates the
simultaneous pickup and delivery problem with relevant constraints in the PI context.
Secondly, the route constructions are improved by the iterated random heuristic and
metaheuristics proposed. For the metaheuristics, RLS and SA were chosen due to the shorter
computational time and fast convergence. The SA acceptance criteria, including exponential
and temperature, providemore flexibility for the acceptance solution. SA uses the exponential
function which accepts various solutions at first and then becomes very selective when the
temperature decreases. These methods were also benchmarked with an insertion heuristic
method. An insertion heuristic is the improvement solution from the previous research (Ben
Mohamed et al., 2017), which was a research work having a similar problem to our study.
Since the insertion heuristic has provided better performance than others in the previous
work, it would be a good indicator to implement and compare the performance with other
methods in this study. Thirdly, the results are compared with the MIP model and
metaheuristics in terms of the total distribution cost and computational time. As the PI
network prioritizes sustainability and full collaboration in the transportation network,
calculation of CO2 emissions and the concept of infrastructure sharing would imply
sustainability and cost optimizing perspectives. Furthermore, this work focuses on multiple
depots and open vehicle route construction between hubs and retailers in the PI context. The
model proposed in this paper is a new approach in the PI context, which is not addressed in
the literature. Heuristics methods are used to solve the large size of problem in this paper in a
reasonable time.

Multiple-depot
vehicle ruting

problem in
the PI

117



4.1 Mixed integer programming (MIP) model
Thismodel is inspired by theMDVRP inMontoya-Torres et al. (2015) andMontoya-Torres et al.
(2016) to solve the transportation routing problem between PI hubs and retailers. However,
some new constraints and variables have been added to support the simultaneous pickup and
delivery process in the context of the PI. In fact, in previous studies, the developedmodel did not
take into account the constraints of the PI paradigm, such as sharing both storage and
transportation resources. This problem is defined over a graph G5 (V, A) where V is the hub
and retailer nodes, andA is the set of arcs between the nodes. The calculation of the holding cost
was inspired by Yang et al. (2017). The following mathematical model was used:

Notations:
• H number of PI hubs
• R number of retailers
• K number of trucks
• N number of pickup and delivery points, which are PI hubs and retailers
• Speed truck speed (km/h)
• Driving_hr driving hours in a day
• d1ij distance matrix from retailer i to retailer j
• d2hi distance matrix from hub h to retailer i
• Sh initial inventory levels at hub h
• INCh inventory unit cost at hub h
• D1i delivery demand at retailer i
• D2i pickup demand at retailer i
• Tk capacity of truck k
• TC fixed unit transportation cost per kilometer

Decision variables:
• Yhik 1, if vehicle k goes from hub h to retailer i. 0, otherwise
• Xijk 1, if vehicle k goes from retailer i to retailer j. 0, otherwise
• Zihk 1, if vehicle k goes from retailer i to hub h. 0, otherwise
• qnk loading quantity of truck k after visiting pickup and delivery point n
• posnk position of truck k at pickup and delivery point n
• Invh remaining inventory levels at hub h after distributing goods to all pickup and

delivery points
• Starting_pk starting point of truck k
• Ending_pk end point of truck k
• qphk loading quantity of truck k at starting hub h

The objective of this model is to minimize the total cost by respecting the following
constraints:

Min:

TC :

  XH
h¼1

XR
i¼1

XK
k¼1

d2hi:Yhik þ
 XR

i¼1

XR
j¼1

XK
k¼1

d1ij :Xijk

þ
 XH

h¼1

XR
i¼1

XK
k¼1

d2hi :Zihk

!!
þ
XH
h¼1

ðINCh: InvhÞ
(1)
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Subject to:

R :
XH
h¼1

XR
i¼1

Yhik ≥
XR
i¼1

XR
j¼1

Xijk; ∀ kf1; . . . ;Kg (2)

R :
XH
h¼1

XR
i¼1

Zihk ≥
XR
i¼1

XR
j¼1

Xijk; ∀ kf1; . . . ;Kg (3)

XH
h¼1

XK
k¼1

Yhik þ
XR
j¼1

XK
k¼1

Xjik ¼; 1∀if1; . . . ;Rg (4)

XH
h¼1

Yhik þ
XR
j¼1

Xjik ¼
XH
h¼1

Zihk þ
XR
j¼1

Xijk ;∀ kf1; . . . ;Kg; ∀if1; . . . ;Rg (5)

Xiik ¼ 0 ; ∀ kf1; . . . ;Kg; ∀if1; . . . ;Rg (6)

Ui−Uj þ R:Xijk ≤R� 1; ∀ kf1; . . . ;Kg; ∀i; jf1; . . . ;Rg (7)

q0k ≤Tk ; ∀ kf1; . . . ;Kg (8)

q0k ¼
 XR

i¼1

XH
h¼1

D1i:Yhik

!
þ
 XR

i¼1

XR
j¼1

D1j:Xijk (9)

X0jk ¼
XH
h¼1

Yhjk ;∀ kf1; . . . ;Kg; ∀jf1; . . . ;Rg (10)

pos1k ¼
XR
j¼1

j:X0jk ; ∀ kf1; . . . ;Kg (11)

ðposjnk ¼ jÞ ¼ posnþ1;k ¼
XR
i¼1

i:Xjik ; ∀ kf1; . . . ;Kg; ∀jf1; . . . ;Rg; ∀nf1; . . . ;N� 1g (12)

ðposjnk ¼ 0Þ ¼ posnþ1;k ¼ 0 ; ∀ kf1; . . . ;Kg; ∀nf1; . . . ;N� 1g (13)

ðposjnk ¼ jÞ ¼ qnk¼ qn−1;k þ ðD2j � D1jÞ ; ∀ kf1; . . . ;Kg; ∀jf1; . . . ;Rg; ∀nf1; . . . ;Ng
(14)

ðposjnk ¼ 0Þ ¼ qnk ¼ 0 ; ∀ kf1; . . . ;Kg; ∀nf1; . . . ;Ng (15)

qnk ≤Tk ; ∀ kf1; . . . ;Kg; ∀nf1; . . . ;Ng (16)

ðYhik ¼ 1Þ ¼ Startingpk ¼ h; ∀ kf1; . . . ;Kg; ∀if1; . . . ;Rg; ∀hf1; . . . ;Hg (17)

ðZihk ¼ 1Þ ¼ Endingpk ¼ h; ∀ kf1; . . . ;Kg; ∀if1; . . . ;Rg; ∀hf1; . . . ;Hg (18)�
Startingpk ¼ h

� ¼ qphk ¼ q0k; ∀ kf1; . . . ;Kg; ∀hf1; . . . ;Hg (19)�
Startingpk≠ h

� ¼ qphk ¼ 0; ∀ kf1; . . . ;Kg; ∀hf1; . . . ;Hg (20)

Sh ≥
XK
k¼1

qphk ;∀hf1; . . . ;Hg (21)
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Invh ¼ Sh �
XK
k¼1

qphk ;∀hf1; . . . ;Hg (22)

XH
h¼1

XR
i¼1

d2hi :Yhikþ
XR
i¼1

XR
j¼1

d1ij :Xijk þ
XH
h¼1

XR
i¼1

d2hi :Zihk

 !
= Speed≤Drivinghr;

∀kf1; . . . ;Kg (23)

Startingpk ¼ Endingpk ; ∀ kf1; . . . ;Kg (24)

In the MIP model, equation (1) represents the objective function; it minimizes the total
transportation cost from hub to retailer, retailer to retailer, and retailer back to the hub, and
includes the total holding cost after finishing distributing goods. Equations (2) and (3) denote
that every route should start and finish at a hub. The starting hub and end hub can be the
same or different. Equation (4) denotes that all retailers must be visited once. Equation (5)
presents the flow of goods between hubs and retailers. Equation (6) states that the vehicle
must move from one retailer to another retailer or the end hub. Equation (7) eliminates sub-
tours in each route. This equation is inspired by Montoya-Torres et al. (2016). Equations (8)
and (9) denote that the initial quantity at the first nodemust be equal to the total demand of all
retailers along a route. They need to respect the truck capacity. Equation (10) states that the
status of vehicle k at the first node on each route is constructed from the starting hub to the
first retailer. Equations (11) to (13) describe the position of a retailer along a route.
The maximum number of retailers for each route is based on the truck capacity. The loading
quantity of each truck is calculated after visiting pickup and delivery point n. Equation (14)
expresses that the total loading quantity at the delivery–pickup point n should respect the
truck capacity. Equation (15) expresses that the total loading quantity will no longer be
updated after visiting all retailers. Equations (16) to (18) denote that the starting point of each
route is the starting hub, and the end point is the end hub after visiting all the retailers on
the route. Equations (19) to (21) initialize the loading quantity of each truck before leaving the
starting hub. The total loading quantity of all trucks should respect the inventory level at the
starting hub. Equation (22) proposes updating inventory levels after distributing goods to
retailers on all routes. Lastly, equation (23) proposes that the total driving time of each truck
should respect the maximum number of driving hours in a day. In addition, there is another
constraint to specify the difference between the PI and a classical distribution network.
Equation (24) proposes that each truck must return to the initial hub after finishing all
deliveries at retailers. This situation only happens in the classical distribution network.

After formulating the problem using MIP, a random local search is proposed to solve the
problem due to high computational times in CPLEX. It is important to highlight that the
objective of this CPLEX experiments is to only validate the model and make sure all
the constraints are correctly implemented and verified. Moreover, the optimal values will help
compare the performance of the suggested meta-heuristics. All the details are provided in the
next section.

4.2 Random local search (RLS)
This method, inspired by Kantasa-ard et al. (2021a), is proposed to improve the initial
solution. Once generated, the initial solution is improved by local search moves. In this study,
two local search moves are considered: insertion and swap. With insertion, a random retailer
is selected from a different random route then inserted in the best position of the chosen route
without exceeding the truck capacity.With swapping, two random retailers are selected from
different routes then swapped after verifying the truck capacity constraint. These two local
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searchmoves are made at each iteration with the same probability (p5 0.5). In addition, swap
or insertion moves are selected randomly. These moves generate more efficient solutions and
provide good results with a shorter computational time. The improvement solution from Ben
Mohamed et al. (2017) is similar to this method. However, the existing one only focuses on the
insertion move. After finishing the local search, the new solution S’ is compared with the
existing solution. Let us suppose that the new solution provides a lower distribution cost than
the existing solution, it will then replace and update the existing ones. Otherwise, the
proposed solution is rejected, and the local search will continue until all iterations have been
completed. The flow chart of this solution is shown in Figure 2.

Based on the above solution, the solution is improved and presents the total distribution
cost, particularly with large instances. SA is also proposed to improve solution performance
and is described in the next section.

4.3 Simulated annealing (SA)
The process of the SA proposed is similar to a RLS. However, there are some differences as
highlighted by the proposed heuristic in Figure 2. Firstly, SA requires an initializing
temperature (T) before starting the local search. Secondly, there are two possibilities of
accepting the new solution after finishing the local search. If the new solution provides a
lower distribution cost than the existing solution, the solution will be updated. Otherwise,
the new solution will be accepted with the probability p(T,f(S’),f(S)) depending on the
temperature T and a random value between 0 and 1. After a certain number of iterations, the
temperature is reduced. This metaheuristic will continue to find a suitable solution until
the temperature equals zero. The details are presented in Figure 3.

5. Experimental results: case study
5.1 The distribution process of agricultural products in Thailand
Recently, many studies have implemented new technologies and innovative methods to
enhance the performance of agriculture supply chains (Lezoche et al., 2020; Mejjaouli and
Babiceanu, 2018; Panetto et al., 2020). However, few studies have focused on the distribution
process of agricultural products, especially in Thailand.

For instance, the research by Chiadamrong and Kawtummachai (2008) implemented MIP
and a genetic algorithm to define the best inventory position and transport route for the sugar
export process. Timaboot and Suthikarnnarunai (2017) formulated linear programming to
minimize total transportation costs in the cassava supply chain. Finally, Luangpaiboon,(2017)
proposed an alternative solution tominimize the imbalance of truckloads such as no-back load
or delayed pickup and delivery on multi-zone dispatching of One Tambon One Product
(OTOP) products in Thailand.

These studies focused mainly on the pickup and delivery process in the classical supply
chain and formulated the problem based on MIP models. However, there are no relevant
studies in the PI context. Due to the research gaps mentioned earlier, the concept of VRPSPD
was implemented in the PI context with the dataset of customer demand for agricultural
products in Thailand.

5.2 Dataset
The forecast of daily demand in tons for each retailer was randomly generated from the total
predicted daily data of agricultural products in the northern region of Thailand (Kantasa-ard
et al., 2021b). The demand interval of each retailer was the range 15–30 tons, and the stock
interval of each hub was the range 50–100 tons. In this case, a single agricultural product,
pineapple, was considered. For the delivery process, PI containers distribute new pineapples
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to retailers. For the pickup process, PI containers pick up some overripe pineapples and take
them back to PI hubs. Accurate positions of the PI hubs and the retailer were established in
the main cities and some random supermarkets in the northern region based on the positions
in Google Maps, as shown in Figure 4. The unit price of transportation was equal to V0.053

Figure 2.
The random local
search process
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(Kantasa-ard et al., 2021b). The unit holding cost, which was inspired by Kantasa-ard et al.
(2021b), was equal to [5.2, 2.6, 1.3] euros for all hubs based on the location of each hub. The fuel
emission rate (FE) was 2,621 g/l, and the fuel consumption rate (FC) was 0.3462 l/km based on
a 70%–80% load in rural areas (Hoen et al., 2014). The total distance (D) was the main input
factor to calculate total carbon emissions. In this study, the total distance was the sum of the

Figure 3.
The simulated

annealing process
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total distance from hubs to retailers and retailers to retailers. The formula of total emissions
was inspired by Hoen et al., 2014):

EMtotal ¼ FE * FC * D (25)

This model was validated using IBM CPLEX (Version 12.8) for the exact method and java
programming language for the heuristic and metaheuristic methods on an Intel Core i5 CPU
with 4 GB of DDR3RAM. The global time limit in CPLEXwas 7,200 s. For themetaheuristics,
the tests were replicated five times and the average values are presented.

According to the background and dataset of the case study, the results of each model,
including the performance comparisons between the classical supply chain and PI, are
presented in the results analysis and discussion section.

5.3 Results analysis and discussion
Ten scenarios with different PI hubs and retailers are considered in Table 2. They were
implemented to calculate the total distribution cost in this model, which is the summation of
the total transportation and holding costs. The total carbon emissions were also considered in
this experiment. These scenarios were tested using MIP and the two metaheuristics
presented previously.

Scenario Number of hubs Number of retailers Number of trucks

1 2 4 2
2 3 6 3
3 3 8 4
4 3 12 6
5 4 8 4
6 4 12 6
7 6 12 6
8 6 18 12
9 6 24 12
10 8 24 12

Source(s): Authors’ own work

Figure 4.
Example of PI hub and
retailer locations

Table 2.
Parameter values
in all scenarios
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Each route comprises the starting hub, retailers and the last hub. As introduced in the
assumptions, the starting hub prepares each truckload with full containers and the last hub
unloads all pickup containers from a truck. The MIP model formulates the solution obtained.
In the example with scenario 2, as shown in Figure 5, there are three routes in a cluster with
one truck per route based on the truck capacity and retailer demand. The first route is [H3-R3-
R2-H1], the second route is [H1-R1-R5-H2] and the third route is [H2-R6-R4-H2].

As seen with the above routes, there are two possibilities. The starting hub and the last
hub are identical or different based on the distance between the last hub and the last retailer.
Moreover, all metaheuristics include the iterated random heuristic as an initial solution. The
simulation results are presented in Table 3, and Figures 6 and 7 below.

As shown in Table 3 and Figure 6a, the total PI distribution cost was lower with the MIP
model in CPLEX than the othermethods for scenarios 1 to 6. However, MIP shows higher cost

Sc

Total PI-distribution cost

MIP RLS SA

Insertion heuristic
(Ben Mohamed
et al., 2017)

PI %GP PI %GP PI %GP PI %GP

1 41.3 0 43.0 4.1 42.1 1.9 43.0 4.1
2 76.3 0 81.2 6.4 91.2 19.5 90.1 18.1
3 127.8 0 159.1 24.5 160.1 25.3 160.1 25.3
4 149.5 0 177.0 18.4 185.5 24.1 170.9 14.3
5 339.3 0 402.0 18.5 390.7 15.1 419.1 23.5
6 308.1 0 529.9 72.0 467.2 51.6 513.1 66.5
7 206.7* 0 194.7 5.8 191.4 7.4 189.4 8.4
8 – – 355.8 N/A 345.0 N/A 352.5 N/A
9 – – 331.0 N/A 340.9 N/A 331.7 N/A
10 – – 1164.4 N/A 1124.4 N/A 1140.7 N/A

Source(s): Authors’ own work
%GP is the gap between metaheuristics and the optimal solution using MIP

Figure 5.
Example of

transportation routes
between PI hubs and

retailers

Table 3.
Comparison of the total

costs and gap
percentage between

MIP and
metaheuristics in the PI

context
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than heuristic algorithm in scenario 7. The reason is that MIP could not find an optimal
solution within 7,200 s, which is the maximum global time. In addition, due to the global time
limit, CPLEX cannot run large instances (scenarios 8 to 10). In this case, we assessed the
performance using metaheuristics. Based on three scenarios (8–10), SA provided the best
performance in terms of the total distribution cost. When we consider a sub-cost within the
total distribution cost (holding cost (6 B), for example), SA also provided a lower holding cost
than the othermethods. The average difference between SA andMIPwas around 21% for the
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1 2 3 4 5
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1200

Total PI-distribution cost for all solving methods

PI-holding cost for all solving methods
(a)

(b)
Source(s): Authors own work

Figure 6.
Comparison of total
costs with MIP, RLS,
SA and an insertion
heuristic in the PI
context (6 A-B)
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total distribution cost. TheMIPmodel can solve the problem in small-to-medium instances, as
shown in scenarios 1 to 7, while SA can solve the problem in large instances, as shown in
scenarios 8 to 10. It is important to mention that in this study, we focus more on solving the
model withmeta-heuristics in a reasonable time. The complexity of themodelmakes it hard to
find a lower bound for this model.

In addition, the results for all the metaheuristics are represented by the average values of
five replications for each instance, as shown on the box plot graph in Figure 7. Indeed,
Figure 7a presents the results of the RLS, SA and insertion heuristic for instances 1 to 5, and
Figure 7b presents the results for instances 6 to 10. The results show that all the
metaheuristics provide long-lasting results for most of the instances. Moreover, the total
distribution costs in the PI context are mostly lower than the classical supply chain.

Regarding Table 4 and Figure 8 below, the performance of the MIP model and the
metaheuristics were evaluated with three random instances. These instances show that the
MIP model still provided a lower total PI distribution cost. Additionally, SA outperformed
the other metaheuristics and differed little from the MIP model. Moreover, these instances
prove that the average number of retailers per route can be more than two. Some trucks

Figure 7.
The five replications
for each instance and
each metaheuristic for
the total distribution

cost (7 A-B)
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contained the requests of three retailers, and some contained the requests of only one retailer.
The number of retailers per truck varied due to the difference in retailer demand.

In terms of the computational time, even though the MIP model provides the optimal total
distribution cost in these cases, it takes longer when the number of hubs and customers
increases. As shown in Table 5, it takes approximately 5 s for a small number of PI nodes and
more than 7,200 s for a large number of PI nodes to obtain the optimal result in some
scenarios. In contrast, other metaheuristics propose a solution in less than one second.

Scenario Number of hubs Number of retailers Number of trucks

R1 3 6 2
R2 4 12 5
R3 3 8 3

Source(s): Authors own work

0

MIP RLS SA IH

R1 R2 R3

100

200

300

400

500

600

700

800

Source(s): Authors own work

Sc

Computational time (seconds)

MIP RLS SA

Insertion heuristic
(BenMohamed et al.,

2017)
Classical PI Classical PI Classical PI Classical PI

1 3.73 3.73 0.010 0.012 0.011 0.011 0.007 0.007
2 3.24 3.00 0.015 0.010 0.015 0.013 0.008 0.011
3 3,120 3,120 0.013 0.009 0.017 0.019 0.010 0.011
4 7,200 7,200 0.001 0.001 0.014 0.014 0.010 0.007
5 1800 1884 0.021 0.013 0.035 0.027 0.051 0.019
6 3,600 7,200 0.021 0.013 0.015 0.054 0.025 0.017
7 7,200 7,200 0.019 0.012 0.001 0.009 0.008 0.018
8 7,200 7,200 0.090 0.226 0.213 0.134 0.174 0.068
9 7,200 7,200 0.075 0.156 0.158 0.109 0.127 0.174
10 7,200 7,200 0.075 0.075 0.082 0.065 0.073 0.116

Source(s): Authors’ own work

Table 4.
Parameter values for
random instances

Figure 8.
Comparison of total PI
distribution cost with
random instances

Table 5.
Comparison of the
computational times
between a classical
supply chain and PI
with MIP, RLS, SA and
insertion heuristic
methods
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Additionally, some scenarios run out of memory due to there being too many retailers.
Therefore, it could be better to implement heuristic and metaheuristic methods to minimize
the total distribution cost when retailers and hubs are increased.

For the total CO2 emissions in Table 6 and Figure 9, the carbon emissions were calculated
from the total transportation cost. Most PI cases provided lower carbon emissions than the
classical supply chain. After comparing metaheuristics, SA provided the lowest carbon
emissions with 84.23 kg in the first instance and 1013.78 kg in the last instance. This means
that route construction within the context of the PI is more sustainable and more
environmentally friendly.

6. Managerial insights
Regarding all the previous results, we demonstrate the performance of PI distribution in
terms of the VRPSPD. All performance indicators (i.e. total distribution cost, computational

Sc

Total emissions (kg)

MIP RLS SA

Insertion heuristic
(Ben Mohamed
et al., 2017)

Classical PI Classical PI Classical PI Classical PI

1 105.052 83.206 109.880 95.704 114.639 84.233 109.880 103.169
2 280.709 214.829 235.956 201.783 234.038 221.814 240.886 211.918
3 296.939 384.425 204.385 164.460 201.441 181.444 201.715 190.346
4 910.318 644.898 719.098 595.043 676.434 585.147 691.123 629.318
5 296.939 334.245 220.239 179.081 268.416 172.681 213.802 186.169
6 910.318 644.898 646.610 533.545 632.811 556.008 570.800 517.521
7 902.887* 1224.600* 910.129 742.005 915.437 703.176 919.272 682.871
8 – – 1656.997 1208.507 1607.724 1107.427 1153.207 1093.251
9 – – 1210.253 1023.639 1308.251 1086.608 1271.442 978.646
10 – – 1245.179 1034.973 1118.544 1013.777 1157.316 1060.893

Source(s): Authors’ own work

Figure 9.
CO2 emissions in a

classical supply chain
and PI using MIP, RLS,

SA and insertion
heuristic methods

Table 6.
CO2 emissions in a

classical supply chain
and PI with MIP, RLS,

SA and insertion
heuristic methods
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time and total CO2 emissions) can help supply chain managers make better decisions and
manage the relevant resources easily in the PI distribution network. In addition, we would
like to propose the managerial flow as a framework for PI transportation and inventory
planning. This framework will increase resource planning flexibility in the supply chain.

As illustrated in themanagerial flow chart in Figure 10, our proposedmetaheuristic will be
implemented in a decision support system (DSS). Firstly, the forecast data are transferred
fromPI hubs and retailers to the DSS. Then, supply chainmanagers canmake the operational
decisions in the PI network using this system. The feasible transportation route and total
distribution cost are the primary outputs using the MIP model in CPLEX or metaheuristics.

Figure 10.
Overview of the
managerial flow in the
supply chain
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Regarding the metaheuristics, SA was chosen due to its outstanding performance (total cost
and computational time). The DSS chooses the MIP model or metaheuristic based on the
evaluation of the quality of the solution and the size of the instances. The quality of the
solution is a trade-off between total distribution cost and computational time. This flow chart
can be adapted and applied to other case studies.

7. Conclusion
This study proposes two main approaches. Firstly, a mathematical model was proposed to
formulate the simultaneous VRPSPD in the PI. Secondly, metaheuristics, in this case RLS and
SA, were proposed to improve the transportation routing solution. These approaches were
compared with the classical supply chain network with the same case study. The results
show that for many instances the total distribution cost is lower in the PI context than in the
classical supply chain. MIP provides the best results for small and medium instances
(scenarios 1 to 6).Metaheuristics provide suitable results for large instances (scenarios 8 to 10)
with a shorter computational time. Moreover, the SA implemented demonstrates the best
results in terms of total distribution cost and holding cost. For the transportation cost, the
performance was quite close to the insertion heuristic method. The average difference
between SA andMIP was around 14% for the total distribution cost and 20% for the holding
cost. For the total carbon emissions, the PI concept proposed a better solution than the
classical supply chain with lower carbon emissions. For example, SA provided the lowest
carbon emissions with 84.23 kg in the PI network, while the classical network exploded with
114.64 kg of carbon in the same instance. In addition, we demonstrated how to implement the
MIP and metaheuristics to optimize all relevant costs in the decision support system.

Regarding future aspects, this research can be improved by implementing another
metaheuristic as a benchmark. Furthermore, all PI hubs should have the same number of
trucks before continuing transportation the next day. This problem hypothesis concerns both
PI and classical networks. Additionally, our approaches can enhance the potential of product
planning and distributing both operational and managerial aspects in many fields, not only
agricultural products. If the distribution network is more complex than our experiment, our
approaches can still be helpful to implement and reduce the network’s complexity.
Researchers can also consider sustainability by implementing another type of transportation
such as an electric truck or train and considering multimodal transportation to reduce total
carbon emissions.
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