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Abstract
Purpose – This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of
electric vehicles (EVs) in the connected environment.
Design/methodology/approach – In this paper, an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action
space (EEDC-HRL) is proposed for connected EVs. The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers
to achieve more potential eco-driving. Moreover, this study redesigns an all-purpose and efficient-training reward function with the aim to achieve
energy-saving on the premise of ensuring other driving performance.
Findings – To illustrate the performance for the EEDC-HRL, the controlled EV was trained and tested in various traffic flow states. The experimental
results demonstrate that the proposed technique can effectively improve energy efficiency, without sacrificing travel efficiency, comfort, safety and
lane-changing performance in different traffic flow states.
Originality/value – In light of the aforementioned discussion, the contributions of this paper are two-fold. An enhanced eco-driving strategy based
an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed to jointly optimize longitudinal velocity and lateral lane-changing for
connected EVs. A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving
while ensuring other driving performance.

Keywords Ecological driving, Electric vehicles, Reinforcement learning in hybrid action space, Velocity and lane-changing control,
Reward function

Paper type Research paper

1. Introduction

There is no doubt that electric vehicles (EVs) have been
booming in recent years due to their environment-friendly
characteristic and higher energy efficiency (Li et al., 2019;
Deng et al., 2020). Nevertheless, additional challenges
arise coupled with inherent advantages of green mobility.
Notably, the range and charging are enormous practical
problems for EVs: its range is shorter and the charging time
is longer than traditional internal combustion engine
vehicles which restricts the popularity of EVs (He et al.,
2018). Nevertheless, on the bright side, the research
studies on eco-driving of EVs have brought a great
promise to solve this problem (Hardman et al., 2018; He
and Wu, 2018; Afshar et al., 2021; Tran et al., 2021),
especially under the condition of connected vehicles
(Vahidi and Sciarretta, 2018; Olovsson et al., 2022;
Shi et al., 2021).

1.1 Literature review
1.1.1 Eco-driving control strategies
A substantial amount of existing literature concentrated on the
eco-driving of EVs by longitudinal control. Bertoni et al. (2017)
proposed an algorithm of energy-saving cooperative adaptive
cruise control, which uses a trajectory preview from the preceding
vehicle and reduces inter-vehicular distance and smooths speed
profile to minimize the energy consumption of autonomous EVs.
Guo et al. (2021) designed traction control and brake control to
track the desired acceleration and deceleration so as to accurately
obtain the desired longitudinal motion andmaximize the braking
energy recovery. Kang et al. (2017) put forward a velocity
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optimization system considering traffic lights, which prompts
EVs to pass the green light immediately without delay. Similarly,
Yu et al. (2019) presented a consensus and optimal speed
advisory model for connected vehicle platoon at an isolated
signalized intersection to enhance energy-efficiency and safety
performance of themixed traffic. The system can significantly cut
down energy consumption without increasing travel time.
Furthermore, Dong et al. (2021), based on the prediction of the
queue ahead, proposed a hierarchical eco-approach control
strategy. This method proves that even under the influence of the
front queue, it can still achieve good energy-saving effect. On the
other hand, a part of scholars are committed to achieving
ecological functions through reasonable lateral movement.
Xu et al. (2018) adopted a multi-layer control method to
simultaneously optimize lane-changing stability and reduce
energy consumption. The results show that the control system
has good stability and energy saving, but there exists a query
about real-time performance of the control system because of the
complicated control algorithm and the huge amount of
calculation. Tajeddin et al. (2019) developed a multi-lane
adaptive cruise controller which computes instantaneous trip cost
for each lane and selects the lane of lowest cost. As they used the
exhaustive method to calculate the cost of each possible driving
trajectory, the real-time performance is also of concern. Chen
et al. (2020) jointly optimized lane-changing time and energy
consumption of all cooperating vehicles by optimal control
methods. Despite they have adopted some methods to speed up
the solution, the amount of calculation is still a problem.
We find that most eco-driving research studies focus on

either longitudinal or lateral control. This is not reasonable in
real driving mode because both longitudinal velocity and lateral
lane-changing are indispensable parts of driving. One obvious
reason is that the controller composed of acceleration and
lane change is pretty complex and easy to produce a huge
computational burden, especially for lane change control.

1.1.2 Reinforcement learning
In recent years, reinforcement learning (RL) has shown its
great advantages in computing speed and dealing with complex
scenario tasks in the field of autonomous driving. Zhu et al.
(2020), Li et al. (2021), Du et al. (2022), Wang et al. (2022)
have confirmed that RL runs much faster thanmodel predictive
control (even more than 200 times faster), which holds a great
promise for real-time implementations. Kendall et al. (2019)
demonstrated the first application of RL to a full-sized
autonomous driving in real-world driving experiments. In their
study, a single monocular image was used as input of model to
learn a policy for lane following in a handful of training episodes
by a continuous RL algorithm. The experimental results
illustrate that the RL algorithm can learn lane following with
under only 30 min of training, which reveals the great potential
of RL in practical application. Qu et al. (2020) reduced the
electric energy consumption and improved transportation
efficiency by dampen traffic oscillations using RL. Rezaee et al.
(2019) proposed a hierarchical RL framework with a novel
state-action space abstraction to control the vehicle to maintain
the desired speed and ensure safety, which allows the trained
model to be transferred from a simulation environment without
dynamics to an environment with more real dynamics.
Krasowski et al. (2020) extended RL with a safety layer which

limits the action space into the sub-action of safe actions to
address the safety problem of autonomous vehicles. Ye et al.
(2020) used proximal policy optimization (PPO) to realize
automatic lane-changing strategy. The results show that this
method can learn and execute lane-changing actions safely,
stably and efficiently. Owing to the aforementioned recent
research progress, the great power of RL has been authenticated.
Additionally, in the process of driving, as the lane-changing

duration is trivial relative to the whole travel time, the
continuous lane-changing process will not make a substantial
impact on the energy consumption of whole travel process.
Therefore, the lane changing can be regarded as an
instantaneous discrete action of lane selection, whereas
acceleration is still implemented in continuous action.
Accordingly, the whole action tuple of driving process is
equivalent to a mixture of discrete and continuous actions. On
the other hand, the RL algorithms based on hybrid action
space have made remarkable progress to tackle the discrete–
continuous hybrid action scenarios recently (Xiong et al., 2018;
Fan et al., 2019). Thus, the RL methods in hybrid action space
can effectively resolve the continuous acceleration and discrete
lane-changing problem. It should be noted that although Guo
et al. (2021) combined Deep Deterministic Policy Gradient
(DDPG) for continuous action space and Deep Q Network
(DQN) for discrete action space to control the longitudinal
velocity and lateral lane-changing decision, the inherent
mechanism of the simple integration is not explicit, and it may
result in local optimum because the movements in two
dimensions are not optimize jointly. Bai et al. (2022) also
considered both longitudinal velocity and lateral lane-
changing, but the application of DQN will cause drastic
changes in acceleration and cannot guarantee global
optimization. Differing from the aforementioned methods, this
paper proposes an eco-driving model based an advance RL
algorithm in hybrid action space can jointly optimize
longitudinal velocity and lateral lane-changing and yield to
better performance.

1.2 Contribution
In light of the aforementioned literature review, our aim is
three-fold. First, this paper is expected to find a reasonable
solution to the problem on cooperative velocity and lane-
changing control for eco-driving. Second, as many studies
focus on promoting the target functions, while ignoring other
driving characteristics, we are prone to redesign an full-scale
reward function to meet the above requirements and ensure
efficient training. In the field of eco-driving, to our best
knowledge, our research is the first to comprehensively
consider other driving performance while improving energy
efficiency. Therefore, the major contribution and novelty of
this paper lie within follows:
� An enhanced eco-driving strategy based an advanced RL

algorithm in hybrid action space (EEDC-HRL) is
proposed to jointly optimize longitudinal velocity and
lateral lane-changing for connected EVs.

� A full-scale reward function consisting of multiple sub-
rewards with a safety control constraint is redesigned to
achieve eco-driving and raise other performance to diverse
extent including travel efficiency, comfort, safety, rational
lane-changingmaneuvers, while ensuring training efficiency.
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The remainder of this paper is structured as follows. Section 2
presents the problem formulation, and Section 3 describes the
eco-driving framework based on RL. In Section 4, a train of
relevant experiments are carried out to estimate the
performance of the proposed framework. The results are
demonstrated in Section 5 together with the analysis, whereas
Section 6 concludes this study alone with the ideas for future
work.

2. Problem formulation

This study aims to perform an eco-driving strategy based RL
through cooperative velocity and lane-changing control in
four-lane urban highway. Substantially, this theme is an
optimal policy learning task for multiple objectives focusing
on energy efficiency. There exist three key elements for the
task:
1 energy consumption model;
2 state space and action space; and
3 full-scale and efficient-training reward function.

The above key elements are clearly introduced in this section,
whereas the specific methodology and the establishment of
systemmodel will be discussed in next section.

2.1 Energy consumptionmodel
Most energy consumption models (ECMs) of EVs are
established by its powertrain model such as Vaz et al.(2015);
Xu et al.(2019). However, for the purpose of ecological
driving control, these ECMs are too sophisticated to be
integrated into the reward function of RL. In this study, a
simple and accurate energy consumption model (Galvin,
2017) for the particular vehicle derived from mathematical
and engineering experience is applied to overcome the above
problem. It only maps the combination of velocity and
acceleration, which can be easily integrated into the reward
function of RL.
Specifically, a Mitsubishi electric vehicle is used as the ego

vehicle in this study, which was conducted the dynamometer
test with up to 36 different test cycles to obtain the
corresponding data of speed, acceleration and battery power
demand. And the data were carried out multivariate
regression analyses to match the best formula between the
three variables. The adjusted value generated from the
multivariate regression gains the highest (0.9703) in the form
of equation (1), coined the expression of the energy
consumption model in this paper:

P ¼ 1281VA1 840:4V � 55:312V2 1 1:67V3 (1)

Where P indicates power, V indicates velocity, A denotes
acceleration (A takes negative values when the electric vehicle
decelerates). As all experiments take into account the energy
recovered by braking, the aforementioned equation also
triggers the braking energy recovery.

2.2 State space and action space
State space stores the state information that the agent of RL
interact with the environment. Note that in the connected
conditions, the relevant information of surrounding vehicles

can be directly collected by connected vehicle technologies
(e.g. vehicle-to-vehicle). To explore ideal eco-driving through
longitudinal velocity and lateral lane-changing movements,
the state space should provide sufficient information for the
agent learning; thus, it is necessary to consider the pertinent
states containing the ego vehicle and all surrounding vehicles
among the four lanes, as following: the velocity of the ego
vehicle, the acceleration of the ego vehicle, the relative
velocity between the ego vehicle and all leader vehicles among
the four lanes, the relative distance between the ego vehicle
and all leader vehicles among the four lanes, the relative
velocity between the ego vehicle and all following vehicles
among the four lanes, the relative distance between the ego
vehicle and all following vehicles among the four lanes;
18 state variables in total.

Action space contains all possible action that can be executed
by the agent in the environment. Especially, the object of this
study is the hybrid action space consisting of both continuous
acceleration and discrete lane-changing. The continuous
acceleration is bounded by the maximum acceleration and
deceleration (3 and �3m/s2, respectively, in this study), whereas
discrete lane-changing includes three variables (�1, 0, 1), in
which �1 represents turning right, 0 indicates keeping the
current lane and 1 denotes turning left.

2.3 Reward function with a safety constraint
To hold a full-scale and efficient-training reward function, the
trade-off is to redesign multiple corresponding sub-rewards
with a safety control constraint.

2.3.1Multiple sub-reward functions
� Economy: one of the indicators reflecting the economy of

EVs is the electric energy consumed per kilometer. We
notice from equation (1) that:

E
S
¼ P � T

S
¼ P

V
¼ 1281A1 840:4� 55:312V 1 1:67V 2 (2)

Where:
E= energy;
S = distance; and
T= time.

The derivation of the aforementioned equation (2) just meets
the requirements of this study. Moreover, the visualization of
equation (2) is depicted in Figure 1, which illustrates that
reasonable speed and acceleration can achieve considerable
energy-saving effect.
To make the energy consumption value as small as possible,

we set the sub-reward function to the reciprocal of the above
formula:

r1 ¼ 1
1281A1 840:4� 55:312V 1 1:67V 2 (3)

� Travel efficiency: velocity, a simple and effective indicator,
can be neatly used to represent the transport efficiency
(He et al., 2020; Jan et al., 2020).

r2 ¼ V (4)
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� Comfort: jerk, the change rate of acceleration, is regarded
as a general indicator to evaluate comfort (Guo et al.,
2021; Ye et al., 2020).

r3 ¼ �jerk2 ¼ � a tð Þ � a t � 1ð Þ
Dt

� �2

(5)

where a(t) denotes the acceleration in time t, a(t � 1) is the
acceleration in time t – 1, andDt indicates the sample interval.
� Lane-changing performance: to avoid aggressive lane-changing

maneuvers, which would disturb traffic operation seriously
(Park et al., 2019), it is essential to add a penalty discount when
lane-changingmaneuvers trigger:

P 0 ¼ �V
tD

(6)

where tD indicates the elapsed time from the last lane-changing
maneuver.
Thus, themulti-modal rewardR is defined as:

R ¼ w1r1 1w2r2 1w3r3 1w4P 0 (7)

where w1, w2, w3, w4 describes the weight factors for respective
sub-reward function.

2.3.2 Safety control constraint
Though safety is the first priority of autonomous driving, it is an
enormous problem how to achieve safe driving simultaneously
considering energy efficiency, comfort, travel efficiency and lane-
changing performance. We have ever attempted to regard safety
as a sub-reward function, but it tended to cause mutual
interference with other sub-reward functions, and it is still
impossible to completely avoid collision even after convergence,
as a result of the soft constraint nature of reward function. On the
worse side, it engenders an adverse impact on the convergence

and speed of training, i.e. training efficiency. To tackle the
problem and reach the full-scale and efficient-training goal, we
ultimately treat the safety as control hard constraint as a previous
study (Zhu et al., 2020): once the relative distance between the
ego vehicle and the lead vehicle is less than the safe distance, the
controlled vehicle will brake in the maximum deceleration
without being controlled by the EEDC-HRL, that is:

a tð Þ ¼ �3m=s2

RLmodel output

d < dsafe

otherwise

(
(8)

where, a(t) is the acceleration of the ego vehicle, d denotes the
relative distance.
To determine the safe distance, a classic stop distance model

(Wilson et al., 1997) was used:

dsafe ¼ veT 0 1
v2e

2amax
� v2l
2amax

(9)

where T0 stands for the driver’s reaction time (defined as 1 s in
this paper), amax denotes the maximum absolute deceleration
value, ve and vl are the speed of the ego vehicle and the lead
vehicle respectively.

3. Eco-driving framework based on reinforcement
learning

In this section, an eco-driving framework based on RL in
hybrid action space is established to handle the optimal policy
learning task raised in Section 2.

3.1 Reinforcement learning in hybrid action space
Classic RL algorithms only can deploy either discrete action space
or continuous action space, such as DQN (Mnih et al., 2013) for
discrete action space, DDPG (Silver et al., 2014) for continuous
action space and PPO (Schulman et al., 2017) for continuous or

Figure 1 Energy consumption in unit kilometer mapping with speed and acceleration
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discrete action space. In recent years, RL algorithms based on
hybrid action space have been proposed to deal with the scenario
with discrete–continuous hybrid action space. To be specific,
DDPG with a parametrized action space (PA-DDPG) allows
DDPG to simultaneously output continuous and discrete actions
(Hausknecht and Stone, 2015). Xiong et al. (2018) proposed a
parametrized deep Q-network (P-DQN) framework through
combining DQN and DDPG seamlessly. Based on PPO, Fan
et al. (2019) creatively designed a hybrid architecture of actor–
critic algorithm for hybrid action space (named H-PPO) because
PPO is capable of learning stochastic policies in continuous action
spaces or discrete action spaces. H-PPO is composed of multiple
parallel sub-actor networks, which decompose the structured
action space into simpler action spaces, alone with a critic network
as an estimator of the state-value function V(s) to guide the
training of all sub-actor networks. The multiple parallel sub-actor
networks are divided into discrete actor network and continuous
actor network, in which discrete actor networks learn stochastic
policies pud to perform discrete action and continuous actor
networks learn stochastic policies puc to perform continuous
action. All actor networks share the first few layers to encode the
state information and updates stochastic policies with the
advantage function provided by the critic network. Different
from PPO learn general stochastic policy pu by equation (10),
H-PPO’s discrete policy pud and continuous policy puc are
updated separately by minimizing their respective clipped
surrogate objective, i.e. equations (11) and (12). Moreover,
H-PPO is experimentally analyzed in four environments
containing hybrid action space and compared with PA-DDPG
and P-DQN. The experimental results show that H-PPO
exhibits better stability, higher convergence values and lower
variance than the other two algorithms in these environments
[refer (Fan et al., 2019) for the specific process]. Thus, the
H-PPO is adopted as the specific algorithm model of RL in
this study. Algorithm 1 describes the pseudocode of the H-PPO
implementation:

LCLIP uð Þ ¼ Êt min rt uð ÞÂt; clip rt uð Þ;1�; 11
� �

Ât

� �h i
(10)

LCLIP
d udð Þ ¼ Êt min rdt udð ÞAt

^
; clip rdt udð Þ;1�; 11

� �
At

^� �h i
(11)

LCLIP
c ucð Þ ¼ Êt min rct ucð ÞAt

^
; clip rct ucð Þ; 1�;11

� �
At

^� �h i
(12)

Algorithm 1Hybrid Proximal policy optimization (H-PPO)
1: initialize discrete policy parameters ud0,

continuous policy parameters uc0
sequentially from internal nodes to leaf
nodes and value function parametersf0;

2: for each k [ [0,n] do
3: CollectsetoftrajectoriesDk ={ti}by

running discrete policy pud and continuous
policypuc intheenvironment;

4: Computerewards-to-go R̂t;
5: Computeadvantageestimates Ât (using

any method of advantage estimation) based
onthecurrentvaluefunctionVfk

;
6: Updatethepoliciesbymaximizingthetwo

kinds of clipped surrogate objectives in
theprevioussequence:

udk11 ¼ argmax
ud

1
jDkjT

X
t2Dk

XT
t¼0

min

pud atjstð Þ
pudk

atjstð Þ Ât; clip rt udð Þ;1� e;11 eð ÞÂt

 !
;

7: Fit value function by regression on mean-
squared error:

fk11 ¼ arg min
u

1
jDkjT

X
t2Dk

XT
t¼0

Vf stð Þ � R̂t

� �2
;

8: end for

3.2 System architecture
The system architecture based on H-PPO is composed of two
components as shown in Figure 2: a RL model and a traffic
environment which is simulated in SUMO, a realistic urban traffic
simulation software (Lopez et al., 2018). These two independent
parts interact through TraCI, a bridge between SUMO and other
control algorithms (Wegener et al., 2008). Specifically, the state
information described in Section 2.2 from traffic simulation
environment is respectively imported to the state encoding
network and the critic network of RL model. The two actor
networks share the state encoding network and generate
corresponding stochastic continuous policy or stochastic discrete
policy to output acceleration or lane-changing actions, whereas the
critic network estimates these policies by state-value function. In
addition, the reward represented in Section 2.3, is used to update
all network parameters tomaximize the return.

3.3 Neural network and hyperparameters
There possess two kinds of neural networks in the system: the
discrete and continuous actor networks are designated for policy
generation, alone with the single critic network for policy
improvement. For the critic network, the input layer is the 18
state variables neurons, and the output layer is the state-value
function. For the two actor networks, the input layer are both the
18 state variables neurons. The output layer of the continuous
actor network is the mean and variable from Gaussian
distribution, with a tanh activation function, which can map
numerical values to the range [�1, 1]; thus, it enables bound the
outputted accelerations between �3 and 3m/s2 by multiplying
three, whereas the output layer of discrete actor applies the
softmax distribution to select discrete values for lane-changing.
For the hidden layers, two-layer fully connected neural network
with 1,024 neurons is adopted for all neural networks. Other
number of nodes and layers had been tested. The result shows
the more nodes under the same number of layers, the better the
performance. However, when the number of nodes exceeds
1,024, the performance improvement is not obvious and running
speed would be slower. When three hidden layers are selected,
the performance is not improved, instead the running speed is
affected. Thus, the chosen hidden layer architecture is sufficiently
matched for our problem. Moreover, the Rectified Linear Unit
activation function is used in the hidden layers, which contributes
to facilitate the convergence of network parameter optimization
(Krizhevsky et al., 2012).
Experimentally chosen hyperparameters of the H-PPO are

listed in Table 1. Including hidden layers, the hyperparameters
in the study were assigned by grid-search and “trial and error”
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approach. We conclude that the H-PPO model is not sensitive
to a substantial share of hyperparameters, which is consistent
with the characteristic of the PPO (Schulman et al., 2017),
except for the learning rate, where too large or too small values
can cause performance degradation. When the learning rate is
chosen as 0.005, the performance reaches a sweet spot.

4. Numerical experiments

In this section, a package of experiments are conducted for
the above system architecture to widely evaluate the
performance of the proposed control model. Specifically, we
engage in the model training and corresponding testing
design of RL model in three different traffic states which are
generated by SUMO and introduce two comparative models
in order to validate the performance of the EEDC-HRL
model.

4.1 Setting of different traffic states
First, the scientific establishment of different traffic flow states is a
basis for comprehensive and synthetic performance evaluation of
the eco-driving system. The traffic flow fundamental diagram has

been regarded as the foundation of traffic flow theory, which
addresses the relationship among three fundamental parameters
of traffic flow: traffic flow (vehs/h), speed (km/h), and traffic
density (vehs/km). As Greenshields proposed the seminal
Greenshields model (Greenshields et al., 1935), extensive traffic
flow models had been followed up, which were systematically
summarized by Qu et al. (2017). Here, the Greenberg model
(Greenberg, 1959), one of the most classic traffic flow models is
adopted in this paper, as it demonstrates the relationship between
traffic flow and traffic density ratio:

q ¼ ck ln
kj
k

� �
(13)

where q indicates the traffic flow, k presents the traffic density, c
is a constant and kj denotes the jam density when vehicle’s
speed is 0. The value of kj can be computed by:

kj ¼ 1
lveh 1 h

� nlane (14)

where lveh is vehicle’s average length, h denotes the minimum
headway when vehicles stop and nlane denotes the number of
lanes.

Figure 2 Eco-driving system architecture based on RL in hybrid action space

Table 1 Hyperparameters of H-PPO

Hyperparameter Value Description

Discount factor 0.97 Number used by stochastic gradient descent update
Minibatch size 16� 1,024 Number used by stochastic gradient descent update
Learning rate 0.005 The learning rate used by Adam
GAE parameter(k) 0.97 Advantage function estimation discounting factor
Clip parameter 0.2 Clipping range
Entropy coeff. 0.01 The coefficient of entropy
VF coeff. 0.6 The coefficient of the value function
Hidden layer1 node 256 The node number of 1st hidden layer
Hidden layer2 node 256 The node number of 2nd hidden layer
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It is not laborious to deduce that when k
kj
¼ 1

e, the traffic flow
reaches its maximum value qm, which represents the most
efficient operation point of transportation. Let km be the
corresponding traffic density when the traffic flow reaches qm,
as shown in Figure 3. Based on the aforementioned definition,
we set k1 = 0.2km, k2 = 0.8km, and k3 = 2 km as the free traffic
flow state, normal traffic flow state and congested traffic flow
state, respectively. The relevant parameters used to calculate
traffic flow can be found in Table 2.

4.2Model training and corresponding testing design
Regarding training and testing phase, the 2,070 random traffic
events for above each traffic flow state were grouped into a
training data set and a held-out testing data set. The traffic
events were randomly executed from 1,380 episodes during the
training process, and the testing was repeated for other 690
episodes. An episode means a traffic events in this study.
Through multiple running, the average reward values of the
three traffic states with respect to the training episodes are
depicted in Figure 4, where the bold line and the shaded areas
represent themean and the standard deviation, respectively.
As shown in Figure 4, the reward values of the three curves

gradually ascend and converge, which proves the training of the
EEDC-HRL model has achieved considerable effects in
different environments. It is worth mentioning that, the
difference of the reward values illustrates the difference of
comprehensive performance in the three traffic flow states.

4.3 Comparative model
To quantify the effect of the proposed model, we
introduced a classical car-following model: intelligent
driver model (IDM) (Treiber et al., 2000) as baseline and a
state-of-art energy-efficient electric driving model (E3DM)
(Lu et al., 2019) as benchmark to compare the eco-driving
performance. The function of IDM is that it has a safe
driving mechanism to prevent vehicle collision (Li et al.,
2021), whereas E3DM can generate smooth acceleration
and efficient regenerative braking through adjusting its
speed-dependent spacing to result in energy-efficient
driving. Particularly, the lane-changing movements of the
two comparative models is controlled by the rule-based
lane-changing model of SUMO (Erdmann, 2015), which
works to realistically implement usual function of lane-
changing, such as obtaining higher speed, departing the
dead lane, turning to the target lane and so on [refer to (dos
Santos and Wolf, 2019; Dong et al., 2021; Silgu et al.,
2021)for more details]. These methods are summarized as
Table 3.

5. Results and analysis

After the establishment and training of the model above,
the experimental results and the analyses based on testing
data are presented in this section. The IDM and E3DM
would be used for comparison to demonstrate various
performance.

Figure 3 Traffic flow versus traffic density
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Table 2 Relevant parameters used to calculate traffic flow

Parameter Value Description Unit

lveh 5 Vehicle’s average length m
h 3 Minimum headway m

kj ¼ 1
lveh 1 h

� nlane 500 The jam density vehs/km

km 183.94 The density when the traffic flow reaches its maximum value vehs/km
k1 = 0.2 km 36.79 The density as free traffic state vehs/km
K2 = 0.7 km 128.76 The density as normal traffic state vehs/km
K3 = 2 km 367.88 The density as congested traffic state vehs/km
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5.1 Evaluatingmetrics of relevant performance
First, the evaluatingmetrics of performance need to be defined.
The economy of EVs is measured by energy consumption of

each kilometer after the vehicle drive through the whole
journey. The access of the energy consumption of each
moment is based on the equation (1), and the whole energy
consumption is computed by:

E ¼
XN
i¼1

Pi � Dt (15)

where E is energy consumption, Pi is the power of i sampling
moment, Dt is the sampling interval, N is the final sampling
time. Then energy consumption of each kilometer is calculated
by:

E
S
¼

XN
i¼1

Pi � Dt

S
(16)

In addition, travel efficiency and comfort are evaluated by
average speed and the absolute value of jerk, respectively, and
headway is used to illustrate safety, which are consistent with
the evaluation methods of other related studies (Li et al., 2021;
Du et al., 2022; Srisomboon and Lee, 2021).

5.2 Experimental results
Figure 5 presents the average values of each metric based on all
tested data, and samples of the same number from IDM and
E3DM are also counted in Figure 5 for comparison.
Additionally, the percentage increase of EEDC-HRL and

E3DM for each performance compared with IDM can be seen
in Figure 6.
Figure 5(a) exhibits the economy of the three models,

where the energy consumption of EEDC-HRL, E3DM and
IDM are 12.15–12.58–13.41 kwh/100 km, 11.61–11.99–12.50
kwh/100 km, 16.67–16.84–17.21 kwh/100 km in three traffic
flow states, respectively. Thus, it indicates that the EEDC-
HRL model generates better energy-saving potential. In terms
of travel efficiency, EEDC-HRL is on a par with IDM, whereas
E3DM exhibits slower than IDM as shown in Figure 5(b).
Besides, as for safety, there is almost no difference for average
headway between EEDC-HRL, E3DM, but they are
higher than IDM as shown in Figure 5(c). The smallest jerk of
EEDC-HRL corresponding to the best comfort is illustrated in
Figure 5(d).
It can be summarized from Figure 6 that compared with

IDM, the EEDC-HRLmodel is capable of effectively improving
energy-saving potential of EVs by 9.39%, 7.10%, 3.14% in three
traffic states, respectively, without sacrificing the transportation
efficiency, comfort and safety. Compared with E3DM, EEDC-
HRL raises energy-saving potential by 3.42%, 3.22%, 0.10%
and the performance of other aspects is equal to or slightly better
than that of E3DM. The detailed data distribution for EEDC-
HRL and E3DM is presented in Appendix, which conduces to
more subtle observation. For lane-changing performance, the
average number of lane changing in different traffic states for
the three methods is counted in Table 4. It is obvious that the
EEDC-HRL produces less intense lane-changing frequency
than other two methods to effectively avoid aggressive lane-
changing maneuvers. In addition, we tested the computational
efficiency of IDM, E3DM and EEDC-HRL based all traffic
events of the whole testing phase. The results demonstrate that
the average running time of the EEDC-HRL (0.88 s) is shorter
than that of the E3DM (2.13 s) and IDM (1.95s), which is
attribute to the great advantages of RL in computing speed and
dealingwith complex scenario tasks.

5.3 Analysis through randomly sampling events
To understand the detailed reasons of the above results, we need
to analyze them from specific testing events. Thus, one traffic

Figure 4 Training performance of H-PPO in three traffic states
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Table 3 Summary of compared methods

Methods Type Lon. Control Lat. Control

IDM Model based IDM Rule
E3DM Model based E3DM Rule
EEDC-HRL RL based H-PPO H-PPO
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event is randomly extracted from the testing events for each
traffic state, respectively. Figures 7–9 shows the velocity,
acceleration, jerk, energy consumption, headway and lane index
in each time step of the three sampled traffic events. According to
these sampled events, there exist three-fold to discuss:
1 The lane-changing performance: For the free traffic flow

in Figure 7, as there is a better lane-changing moment by
training and learning of the proposed objectives, the

Figure 5 Average values of each metric for EEDC-HRL based on all tested data

(a) (b)

(c) (d)

Notes: E3DM and IDM are also presented for comparison: (a) energy consumption; (b) speed; (c) headway; (d) jerk

Figure 6 Percentage increase of EEDC-HRL compared with (a) IDM, (b) E3DM

Table 4 Average number of lane changing in different traffic states for the
three methods

Traffic states
Methods Free Normal Congested

IDM 1.43 2.85 0.21
E3DM 1.14 2.11 0.15
EEDC-HRL 0.86 1.44 0.11
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Figure 7 The sampled event in free traffic states

Figure 8 The sampled event in normal traffic states
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fluctuation of velocity and acceleration of EEDC-HRL
perform more lower than E3DM and IDM which helps
to produce better economy on the whole. The reason is
that dampening erratic acceleration patterns could
reduce the energy consumption of a given journey
significantly (Qu et al., 2020; Galvin, 2017). Instead,
the velocity and acceleration of IDM generate larger
range of change because of improper lane-changing
moment. For the normal traffic flow in Figure 8, more
intense lane-changing actions were carried out by IDM
and E3DM, which also induces more unstable
oscillations in velocity and acceleration. The EEDC-
HRL performs more rational lane-changing actions, so
that the fluctuation of velocity and acceleration is not so
violent.

2 The longitudinal acceleration performance: From the
three sampling events in Figures 7–9, the velocity and
acceleration of E3DM perform more smoothly than IDM,
whereas EEDC-HRL still exists the overall marginal lead
compared with E3DM, especially as can be seen from the
Figure 9. It is noted that there never occurs any lane-
changing behavior in the sampled event of congested
traffic states because of traffic jam, so the whole driving
process can be deemed as the car-following driving only
controlled by longitudinal acceleration. Thus, the above
behaviors result in better energy-efficient performance for
the EEDC-HRLmodel.

3 The other performance: It can be clearly observed that
EEDC-HRL and E3DM produce smaller jerk and larger
headway, which corresponds to better comfort and safety.

For travel efficiency, EEDC-HRL is almost equivalent to
IDM and marginally higher than E3DM.

In summary, the reasons we analyze from randomly sampling
events are as follows. Through the training and learning of the
proposed goals, the vehicle controlled by EEDC-HRL model
enables perform lane-changing action at a more rational
moment; its lane-changing action is less intense. In other
words, its lane-changing action is not so frequent; its
longitudinal control performs more smoothly. Consequently,
the fluctuation of velocity and acceleration is alleviated to
produce better energy efficiency.

6. Conclusion

In conclusion, this paper is devoted to using a cooperative
velocity and lane-changing control to achieve the purpose of
eco-driving for EVs and ensure other performance.We propose
an eco-driving model based on RL control in hybrid action
space (EEDC-HRL) and redesign a full-scale reward function
to balance economy, travel efficiency, comfort and lane-
changing maneuvers, with a safety control constraint to ensure
safety. To better integrate with the reward function, a simple
and accurate energy consumption model is applied. Afterward,
the eco-driving model is trained and tested in three traffic
states: free traffic flow, normal traffic flow and congested traffic
flow. The experimental results show that as its better lateral and
longitudinal control performance, velocity and acceleration
controlled by the EEDC-HRL model run more smoothly. It
helps the electric vehicle to trigger considerable energy-efficient
potential on average 9.39%, 7.10% and 3.14% in different

Figure 9 The sampled event in congested traffic states
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traffic environments and exceeds E3DM. Besides, compared
with two comparative methods, the other performance of
EEDC-HRL is not inferior to that of them. Therefore, the
proposed EEDC-HRL model is of considerable value in the
field of energy-efficiency for EVs.
In the future work, we will consider more complex scenarios

such as mandatory lane-changing and intersections to
comprehensively verify the performance of the proposed
algorithm. Moreover, we will be devoted to platoon-based eco-
driving research, because platoon at small inter-vehicle
distances can reduce aerodynamic drag, which brings greater
energy-efficient potential. Meanwhile, considering the more
complex traffic environment of urban roads, traffic lights will be
added into the traffic model. Furthermore, the traffic scene for
more macroscopic level will be considered, where the
controlled vehicle or platoon can choose a more energy-saving
trajectory.
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Appendix. The detailed data distribution of each
performance metric from testing data

See Figure A1-A3.

Figure A1 The data distribution of each performance indicator in the free traffic flow

Enhanced eco-driving strategy

Haitao Ding et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 316–332

330



Figure A2 The data distribution of each performance indicator in the normal traffic flow
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Figure A3 The data distribution of each performance indicator in the congested traffic flow
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